Community-Based Water Monitoring

2021 Monitoring Report

Prepared by:

The Elk River Alliance, Fernie BC

With Financial Support from:

The Province of British Columbia's BC Community Gaming Grant and The Healthy Watershed Initiative, Columbia Basin Trust, and the ERA community

Land Acknowledgment

ERA operates within the ʔamakʔis Ktunaxa, the Traditional Territory of the Ktunaxa Nation.

For more than 10,000 years, the Ktunaxa people have occupied their traditional territory, the ?amak̂?is Ktunaxa, which spans from southwestern Canada into parts of the United States. (Ktunaxa Nation Council 2022). The Elk River flows through part of this traditional territory, the Qukin ?amak̂?is, or the land of the raven. Prior to European settlement, the Ktunaxa people moved throughout this land, following vegetation and hunting cycles. The introduction of European settlers in the late 1800s and the creation of Indian reservations marked the beginning of large land-use changes and a long history of resource development.

Executive Summary

The Elk River Alliance's (ERA) Community-based Monitoring program (CBWM) was established in 2012 as a response to rising community concern over the health of the Elk River Watershed. The primary purpose of the program is to fill in gaps in currently available watershed data and to make these data accessible to the wider community. In 2020, ERA's CBWM program transitioned into a fully CABIN (Canadian Aquatic Biomonitoring Network) based program, adopting these nationally recognized protocols to assess 10 sites across 5 tributaries of the Elk River, all affected by different types of land-use and development.

The Elk Valley has a long history of resource development following European arrival more than 100 years ago. Currently, the valley is home to 4 active steelmaking coal mines, with two additional mines and a mine extension either currently submitted or pending submission for regulatory review. Following a long period of moderate timber extraction over the past century, the valley is experiencing a rapid increase in the rate and volume of clearcut timber harvesting by a private logging operation. Growing urban centers and linear development such as road, rail, power and natural gas also have their impacts on the Elk River and its tributaries. Since extensive government and industry water monitoring programs focus on the effects of mining operations, the Elk River Alliance's CBWM program to date has examined the impacts of other land uses on five tributaries which are not affected by current mining operations.

Analysis of 2021 sampling data indicates most sites were in relatively good condition, compared to reference sites which have little or no human disturbance. Exceptions to this were the lower Coal Creek and Morrissey Creek sites (COL001, MOR001), as well as both Lizard Creek locations (LIZ001, LIZ003), which contained benthic macroinvertebrate communities that differ from the "reference condition" modelled using undisturbed sites. All water chemistry parameters measured were below BC water quality guidelines. Morrissey and Coal Creek sites are downstream of moderate to high current and historical land use activities, particularly current logging, but did not show exceedances of water quality guidelines. These two streams are relatively new to the CBWM program, with Coal Creek added in 2019 and Morrissey in 2020. Other sites with a longer history in the CBWM program show fluctuating water quality and benthic macroinvertebrate conditions over time. Long-term data will allow for a greater understanding of the relative role of natural and human-influenced processes in these areas.

That being said, the confidence in the determination of differences between reference and test sites depends upon how well reference sites represent similar habitats to test sites. Reference site data are used to create "Reference Condition" models, which are then matched with test site data to determine the extent of differences. If Reference Condition models represent habitats which are not sufficiently representative of test sites, results can be misleading. In 2021, a newer, more region-specific reference Condition CABIN model (Columbia 2020) was used to assess CBWM monitoring locations. After this shift in the model, Lizard Creek site assessments went from a "mildly divergent" assessment to "highly divergent". Investigations are currently underway to examine the accuracy of these results, eliminate any possible errors that may have led to inaccurate assessments, and explore the next steps in monitoring this creek.

CBWM assessments continued in 2021 based on recommendations from the Elk River Watershed Monitoring Collaborative.

Table of Contents

Land Acknowledgment	2
Executive Summary	3
Table of Contents	4
List of Figures	5
List of Appendices	8
Acknowledgements - 2021	9
Introduction	11
The Elk River Alliance	11
Advisor Credentials	11
Staff and Volunteer Credentials	11
Community-based Water Monitoring (CBWM)	12
Study Area	12
Lizard Creek	17
Alexander Creek	18
Boivin Creek	19
Coal Creek	20
Morrissey Creek	21
Background Information	22
CABIN	22
Habitat Variables	22
Physical Properties of Water	23
Water Chemistry	25
Benthic Invertebrates	27
STREAM e-DNA	28
Methods	29
Site Selection	29
Aquatic Habitat Assessment	29
Laboratory Analysis	30
Water Chemistry	30
Benthic Invertebrate Taxonomy	30
Data Analysis	30
Results & Discussion	
Lizard Creek	33

Alexander Creek41
Boivin Creek43
Coal Creek46
Morrissey Creek48
Water Quality Trends54
Study Limitations
Conclusion & Recommended Actions
Literature Cited
Appendix A: CABIN Reports69
Appendix B: Raw CABIN Datasheets
Appendix C: CARO Reports
Appendix D: Benthic Macroinvertebrate Taxonomy Report
Appendix E: Stream Report
Appendix F: Lizard Creek Photos from 2012 to 2021
List of Figures
Figure 1. Elk River watershed (British Columbia) and CBWM site locations. ERA sites are chosen based on community input and focus largely on non-mine-affected tributaries. 2021 study locations include Boivin Creek, Alexander Creek, Lizard Creek, Coal Creek and Morrissey Creek

community input and focus largely on non-mine-affected tributaries. 2021 study locations include Bo Creek, Alexander Creek, Lizard Creek, Coal Creek and Morrissey Creek	oivin
Figure 2. Close-up of Lizard Creek (LIZ001, LIZ003), Coal Creek (COL001, COL003) and Morrissey Creel (MOR001, MOR002), the southern-most study sites in the CBWM program.	
Figure 3. Alexander Creek site locations (ALX001, ALX003), just East of Sparwood, BC	15
Figure 4. CBWM sites (BOI001, BOI002) on Boivin Creek in Elkford	16
Figure 5. Images of LIZ001: upstream across the stream and downstream	17
Figure 6. Images of LIZ003: upstream, across the stream and downstream	17
Figure 7. Images of ALX001: upstream, across the stream and downstream	18
Figure 8. Images of ALX003: upstream, across the stream and downstream	18
Figure 9. BOI001: upstream, across the stream and downstream.	19
Figure 10. BOI002: upstream, across the stream and downstream.	19
Figure 11. COL001: upstream, across the stream and downstream.	20
Figure 12. COL003: upstream, across the stream and downstream.	20
Figure 13. MOR001: upstream, across the stream and downstream	21
Figure 14. MOR002: upstream, across the stream and downstream	21
Figure 15. ERA Infographic outlining the importance of temperature to aquatic systems	23

Figure 16. ERA CBWM infographic explaining turbidity and its importance	24
Figure 17. ERA infographic on chemical parameters associated with the CBWM program	25
Figure 18. ERA infographic outlining the biological parameters associated with the CBWM progr	am 28
Figure 19. CABIN analysis results for Lizard Creek sites from 2012 – 2021 using the Columbia 202 model.	
Figure 20. CABIN analysis results for Lizard Creek sites from 2012-2021 using the Okanagan-Coli 2010 Preliminary model	
Figure 21. CABIN community ellipses for LIZ001 in 2021.	34
Figure 22. CABIN community ellipses for LIZ003 in 2021.	35
Figure 23. Land use in the Lizard Creek Catchment	36
Figure 24. Amount of Phosphorus (mg/L) measured at monitoring sites during yearly CABIN sambetween 2012 and 2021.	
Figure 25. Amount of Sulfate (mg/L) measured at monitoring sites during yearly CABIN sampling between 2012 and 2021.	
Figure 26. Conductivity at ERA CABIN sites between 2012 and 2021.	39
Figure 27. Hardness (CaCO3) levels (mg/L) measured at monitoring sites during yearly CABIN sa between 2012 and 2021	. •
Figure 28. Amount of Calcium (mg/L) measured at monitoring sites during yearly CABIN samplir between 2012 and 2021.	-
Figure 29. Amount of Magnesium (mg/L) measured at monitoring sites during yearly CABIN sambetween 2012 and 2021.	. •
Figure 30. CABIN analysis results for Alexander Creek sites from 2012 - 2021	42
Figure 31. CABIN community ellipses for Alexander Creek's downstream site, ALX001 in 2021	42
Figure 32. CABIN community ellipses for Alexander Creek's upstream site, ALX003 in 2021	43
Figure 33. CABIN results for Boivin Creek sites in 2019 - 2021. The upstream (BOI002) site has rein a similar state to reference condition, while the downstream site (BOI001) is beginning to div from this state. Future assessments will allow for ERA to monitor any developing patterns	erge
Figure 34. CABIN community ellipses for BOI001 (downstream) in 2021, showing the site to be "divergent".	•
Figure 35. CABIN community ellipses for BOI002 (upstream) in 2021, showing the site to be "sin reference"	
Figure 36. CABIN results for Coal Creek sites in 2019 – 2021	47
Figure 37. 2021 CABIN analysis community ellipses for the Coal Creek downstream site, COL001 showing the site has significantly diverged from reference condition	
Figure 38. 2021 CABIN analysis community ellipses for the Coal Creek upstream site, COL003, shall the site is just at the edge of mild divergence from reference condition.	_

Figure 39. Results of CABIN assessment for Morrissey Creek sites in 2020 and 2021. MOR002 is in "reference condition" while MOR001 was classified as "highly divergent"
Figure 40. CABIN analysis community ellipses for the Morrissey Creek downstream site, MOR001, showing the site significantly diverging from reference condition
Figure 41. CABIN analysis community ellipses for the Morrissey Creek upstream site, MOR002, showing the site is similar to reference condition50
Figure 42. pH values for CBWM sites from 2012-2021. All sites remain within the range of limits outlined within the BC Water Quality Guidelines
Figure 43. Temperature values for CBWM sites from 2012-202155
Figure 44. The amount of dissolved oxygen at CBWM sites in mg/L from 2012-2021. Site values do not fall below the BC water Quality Long-term Guideline minimum for Freshwater Aquatic Life (8mg/L)56
Figure 45. Conductivity levels measured at CBWM sites from 2012-2021
Figure 46. Discharge measurements calculated for CBWM sites from 2012- 202159
Figure 47. Total selenium concentrations at CBWM sites from 2012 to 2021. All concentrations are well below the BC water quality guideline of 0.002 mg/L ($2\mu g/L$)61
Figure 48. Total selenium in the Elk River mainstem at the outflow to Lake Koocanusa. Approximate concentrations at CBWM tributaries are included to the right and coincides with Elk River concentrations in the 1990s
List of Tables
Table 1. A comparison of CBWM sites, their classification according to 2020 CABIN assessments, and additional statistical measures that address the classification – RIVPACS, Bray-Curtis dissimilarity, and the percent EPT (Ephemeroptera, Plecoptera, Trichoptera). Highlighted cells indicate values that differ from what is expected for a reference site in good condition

Table 2. Outline of the potential limitations of ERA's Community-based Water Monitoring program 62

List of Appendices

Appendix A: CABIN Reports
Appendix B: Raw Datasheets
Appendix C: CARO Reports

• Appendix D: Benthic Macroinvertebrate Taxonomy Report

• Appendix E: Stream Report

Acknowledgements - 2021

This project was managed and delivered by the Elk River Alliance (ERA) with financial support from the BC Government's Community Gaming Grant, Healthy Watersheds Initiative (administered through the Real Estate Foundation of BC), and the Columbia Basin Trust. We'd also like to thank everyone who made inkind contributions to the project, donated equipment, provided vehicles, or offered professional advice and opinions. ERA wishes to provide a heartfelt thank-you to all of our volunteers for their time and effort throughout this project.

Financial Support

- BC Government
- Health Watersheds Initiative
- Columbia Basin Trust

In-Kind support

- Stella Swanson, ERA Board of Directors (Program Advisor)
- Ashlee Jollymore, ERA Board of Directors (Program Advisor)
- Living Lakes Canada (CABIN Training)

Volunteers

- Alana Block
- Chris Bush
- Chandra Buchanan

Laboratory Analyst

CARO Analytical Services 3677 BC-97 Kelowna, BC V1X5C3 kelowna@caro.ca 250-765-9646

Taxonomist

Pina Viola 71 – 10367 127B Street Surrey, BC V3V 5M5 Pinaviola2001@yahoo.ca 778-714-8667

The **Healthy Watersheds Initiative** is a \$27-million program, supported by the Province of BC, to stimulate British Columbia's economic recovery through investments in community-driven watershed conservation and restoration projects. Through this program, the Real Estate Foundation of BC, in partnership with Watersheds BC, is administering grants for more than 60 watershed security projects in communities across the province.

https://refbc.com/healthy-watersheds-initiative

The **Real Estate Foundation of BC** is a philanthropic organization that works to advance sustainable land use and real estate practices in British Columbia. Since 1988, the REFBC has granted more than \$90 million for research, education, and policy projects that strengthen BC communities and protect our land and water.

https://refbc.com

Watersheds BC was launched in 2020 to support water leaders to improve decision-making for their home waters by equipping them with the knowledge, skills, and connections they need to engage effectively in their watershed. WBC supports water leaders across many organizations including First Nation communities and governments, local government staff, watershed boards and roundtables, provincial government staff, and other community champions.

https://www.watershedsbc.ca

The **Province of BC** has invested \$37 million (including \$27 million through the Healthy Watersheds Initiative) for projects that support healthy watersheds, species, and ecosystems, and create new jobs in areas that are critical to help communities adapt to the effects of climate change. This funding is part of the province's \$10 billion COVID-19 response to help people in hard-hit industries.

https://strongerbc.gov.bc.ca

Introduction

The Elk River Alliance

Operating since 2010, the Elk River Alliance (ERA) is a community-based water charity that connects people to the Elk River using science, education and community collaboration to ensure sustainable stewardship of the Elk River watershed. ERA aims to improve and preserve watershed health through projects that raise watershed literacy, inform sustainable water decision-making, collect scientific data to prioritize restoration opportunities, and promote safe and sustainable river recreation. ERA is a registered charity that is governed by a volunteer board consisting of board members from various backgrounds.

ERA has four guiding principles: (1) Stimulate conversation, share information, and facilitate community input to encourage sustainable water decision-making in the Elk Valley; (2) Promote a new era in watershed thinking by coordinating a community voice to contribute to watershed planning and management activities, regulatory processes, and other regional water initiatives; (3) Bring together diverse points of view and offer a safe place to dialogue about the Elk River, and; (4) Unite not divide.

Advisor Credentials

Stella Swanson, Ph.D. Limnology (Director, Chair of the Program & Technical Working Group)

Stella is an aquatic biologist whose42 year-career has included management of the Aquatic Biology Group at the Saskatchewan Research Council and consulting with SENTAR Consultants and Golder Associates, Ltd. She has owned and operated Swanson Environmental Strategies since 2007, where she focuses on environmental risk management, Indigenous and community engagement, and sustainability. Stella has contributed to dozens of environmental impact assessments, ecological risk assessments and human health risk assessments. She provides strategic advice regarding the regulatory requirements for resource development projects and facilitates multidisciplinary teams working on a wide range of environmental issues. She led the development of a new generation of monitoring design approaches for Terrestrial Biological Monitoring, focused on monitoring for cumulative effects within the Oil Sands Monitoring Program and in 2020 was appointed to the Nuclear Waste Management Advisory Council to provide advice on siting a high-level nuclear waste facility in Canada. More locally, she led the original development of the Elk Valley Cumulative Effects Management Framework and was the chair of the Strategic Advisory Panel for Selenium Management.

Ashlee Jollymore, Ph.D. Resource Management Studies (Director, Vice Chair)

Ashlee is a hydrologist for the provincial government in the River Forecast Centre and has experience in forestry, land management and sustainable development.

Staff and Volunteer Credentials

Chad Hughes, Executive Director, B.Sc. Environmental Science

Kaileigh McCallum, Junior Ecologist, M.Sc. Biodiversity & Conservation

Chris Bush, ERA Volunteer

Alana Block, ERA Volunteer

Staff and Volunteers were trained and received CABIN Field technician (Chris Bush, Alana Block) and Project Manager level certification (Chad Hughes and Kaileigh McCallum), through the Canadian Rivers Institute and Living Lakes Canada (LLC). LLC also provided training on the new STREAM e-DNA program.

Community-based Water Monitoring (CBWM)

The Elk River Alliance's Community Based Water Monitoring (CBWM) program collects baseline data on aquatic habitat health and increases community water literacy in the Elk River Watershed, located in the East Kootenay Region of the Province. The program was created to fill gaps in watershed data, with findings creating an opportunity for community and industry discussion on watershed health and providing contextual information to decision makers. The program involves trained staff and volunteers conducting monitoring and research on targeted Elk River tributaries and sharing relevant findings with the community.

The valley's long-standing relationship with coal mining has resulted in the formation of extensive government and industry water monitoring programs covering a large extent of mine-affected areas. However, aquatic health of non-mine affected tributaries is not monitored despite impacts from other forms of land use. The Elk River alliance's Community Based Water Monitoring program began monitoring the effects of land use on non-mine affected Elk River tributaries to allow for a more well-rounded assessment of the state of the watershed. This program has expanded to now include five Elk River tributaries.

Study Area

ERA's CBWM program is located in the Elk River watershed, located within the East Kootenay region of British Columbia (Figure 1). This watershed begins at the Elk Lakes near the Continental Divide and extends to Lake Koocanusa, which extends across the Canada-US border. The communities of Elkford, Sparwood, Hosmer, Fernie and Elko are located along the river as well as rural properties in the Regional District of East Kootenay.

In 2021, the CBWM program assessed ten sites across five major tributaries – Lizard Creek, Alexander Creek, Coal Creek, Boivin Creek and Morrissey Creek (Figure 1). All of these sites were chosen as they are areas of community interest and/or contain good aquatic habitat that ERA identified as important to monitor, preserve, or restore.

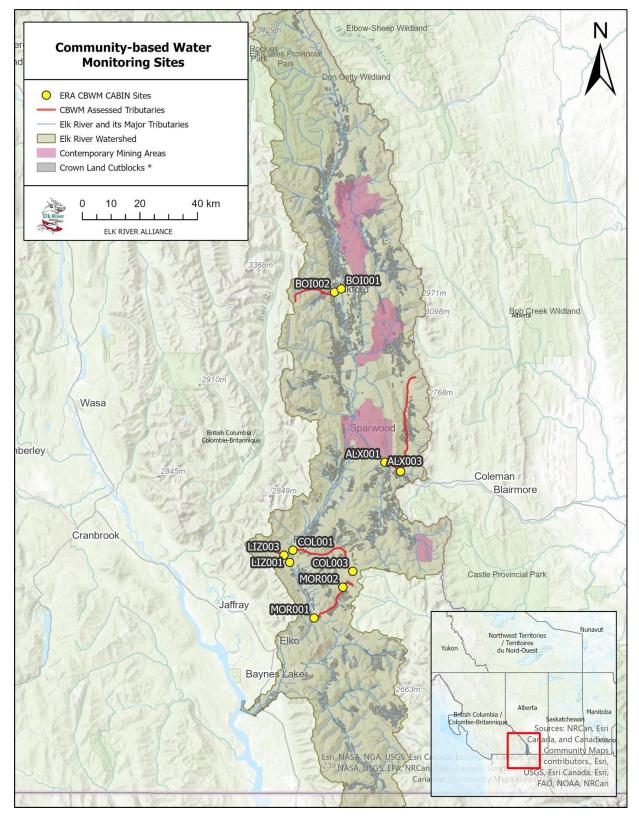


Figure 1. Elk River watershed (British Columbia) and CBWM site locations. ERA sites are chosen based on community input and focus largely on non-mine-affected tributaries. 2021 study locations include Boivin Creek, Alexander Creek, Lizard Creek, Coal Creek and Morrissey Creek.

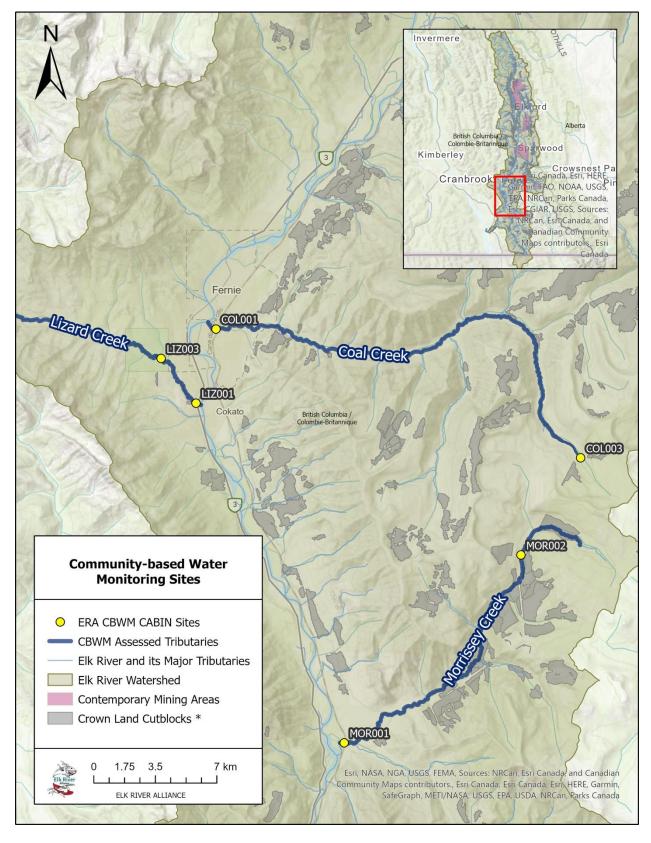


Figure 2. Close-up of Lizard Creek (LIZ001, LIZ003), Coal Creek (COL001, COL003) and Morrissey Creek (MOR001, MOR002), the southern-most study sites in the CBWM program.

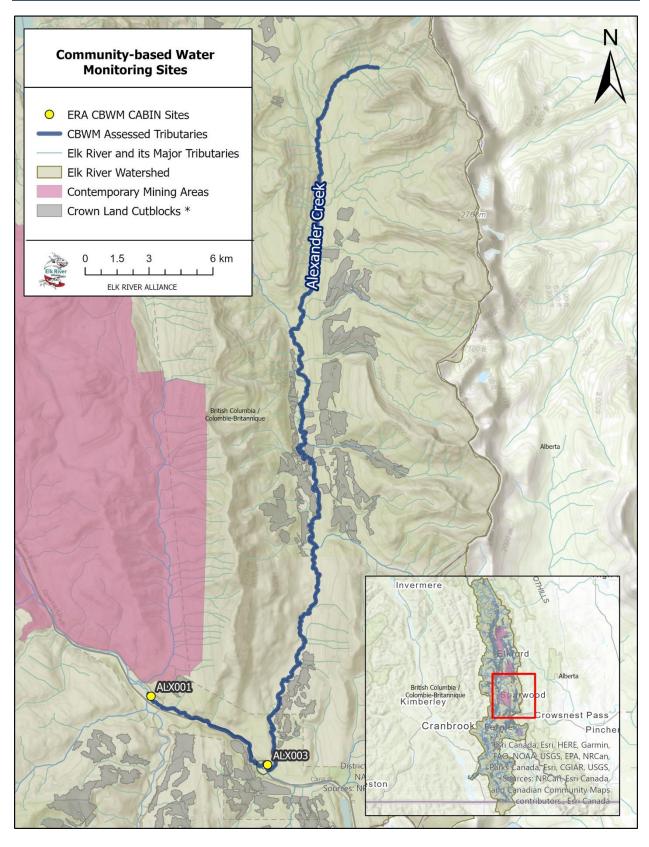


Figure 3. Alexander Creek site locations (ALX001, ALX003), just East of Sparwood, BC.

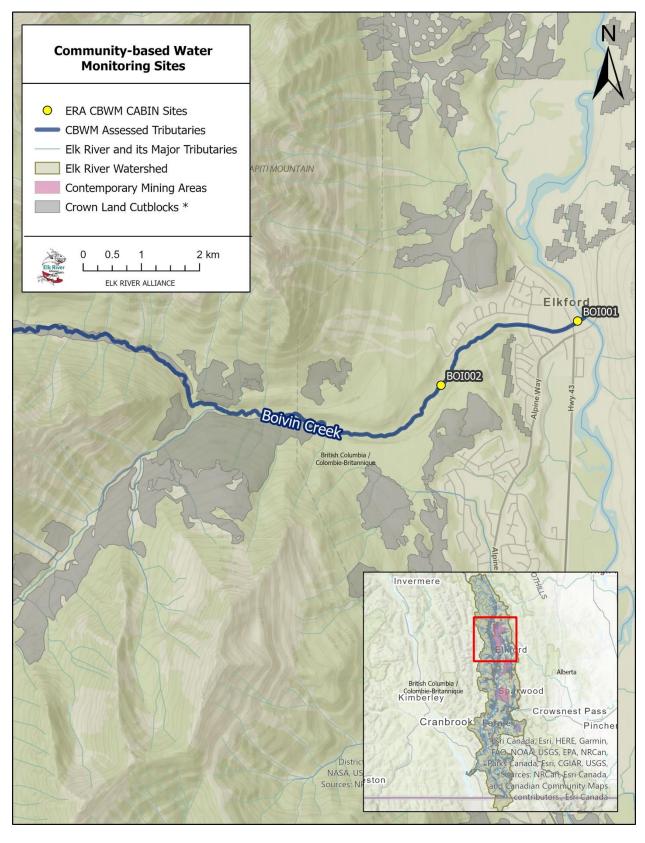


Figure 4. CBWM sites (BOI001, BOI002) on Boivin Creek in Elkford.

Lizard Creek

Lizard Creek, located approximately 5km south of Fernie, was the first Elk River tributary for ERA's CBWM program. It was initially assessed as a 'reference site' in 2011 since at the time, the creek and its catchment had relatively little residential development and no active industrial activity (although logging had occurred historically). A large amount of the lower portion of this creek falls within Mount Fernie Provincial Park and is protected. Upstream of the Provincial Park is Island Lake, a hotel and cat skiing area with access roads. Residential development in close proximity to the creek began in 2018. Lizard Creek has continued to be monitored as it contains important spawning grounds for Westslope Cutthroat Trout (Elk River Alliance 2020).

Since 2018, the Lizard Creek catchment downstream of the provincial park has seen increasing urban, road and trail development. ERA will continue to pay special attention to these sites as the surrounding land-use changes.

LIZ001

Figure 5. Images of LIZ001: upstream across the stream and downstream.

LIZ003

Figure 6. Images of LIZ003: upstream, across the stream and downstream.

Alexander Creek

In 2012, sites were established along Alexander Creek. This creek was identified as important due to its role as a significant tributary into Michel Creek, as well as the absence of effects from mining and urban development. The placement of sites along Alexander Creek allowed ERA to expand monitoring efforts into the Sparwood area. Sites along the creek were established to monitor effects related to stream proximity to the Crowsnest Highway, local logging and cattle grazing leases in the area.

The proposed Crown Mountain coal mine in the upper reaches of Alexander Creek poses an additional source of stressors, and continued monitoring here will provide baseline data for pre-mining conditions (NWP Coal Canada Ltd. 2014).

ALX001

Figure 7. Images of ALX001: upstream, across the stream and downstream.

ALX003



Figure 8. Images of ALX003: upstream, across the stream and downstream.

Boivin Creek

In 2018, Boivin Creek was selected in order to include Elkford in CBWM activities, and to contribute to a greater understanding of tributaries further upstream in the watershed. Boivin Creek was chosen for its undeveloped upstream catchment and to understand the effects of urban development and extensive riprap in its lower reaches.

BOI001

Figure 9. BOI001: upstream, across the stream and downstream.

BO1002

Figure 10. BOI002: upstream, across the stream and downstream.

Coal Creek

Coal Creek was added to the CBWM program in 2019. According to community discussions, this creek purportedly contained good quality habitat for Westslope Cutthroat Trout; however, few spawning sites were identified by ERA in a 2019 redd survey (Elk River Alliance 2020). Historical mining, logging, forestry, access roads, recreational trails/activities, and the old Fernie landfill are all likely stressors on this catchment. In recent years, increased clearcut logging activity and associated road development along Coal Creek continues to alter the waterways in this catchment area.

COL001

Figure 11. COL001: upstream, across the stream and downstream.

COL003

Figure 12. COL003: upstream, across the stream and downstream.

Morrissey Creek

The Morrissey Creek sites are the newest additions to ERA's CBWM monitoring locations, added in 2020 due to the presence of good quality trout spawning habitat coupled with logging, resource road use and cattle grazing activities in the catchment. Monitoring this creek is essential in understanding and potentially mitigating the effects of logging, linear development (forestry roads, gas lines), recreational use (vehicle and ATV access), agriculture, and natural erosion that may degrade Morrissey Creek.

MOR001

Figure 13. MOR001: upstream, across the stream and downstream.

MOR002

Figure 14. MOR002: upstream, across the stream and downstream.

Background Information

CABIN

2020 marked the completion of the CBWM program's transition from Streamkeepers-based stream assessment protocols to CABIN (Canadian Aquatic Biomonitoring Network) protocols for the assessment of aquatic health. CABIN is a nationally recognized program that uses a "reference system approach" to assess aquatic ecosystem condition and was designed with community-based water monitoring in mind. ERA staff and volunteers have been trained by certified CABIN trainers.

The reference system approach to assessment means study sites or "test sites" are compared to 'reference sites', or sites considered to be in pristine condition. CABIN uses a combination of physical, chemical and biological parameters, to statistically categorize a test site and analyze it in comparison to reference sites with similar hydrologic (amounts and quality of water), geomorphic (stream bed, channel features and bank forms) and geographic (topography, geology, climate, vegetation, and human setting) characteristics. The assumption is a test site in good condition will have similar assessed values to the associated reference sites, and the more polluted or poor quality the site is, the farther it will diverge from reference site conditions.

The use of CABIN protocols has greatly improved ERA's ability to produce data comparable to monitoring data collected by other organizations, government, and industry, increasing the validity of ERA's work and facilitating better data sharing.

In 2020, a new CABIN model for the Columbia Basin was released. In 2021, ERA's CBWM program upgraded from using the older Okanagan-Columbia 2020 model to the Columbia Basin 2020 model, which is tailored to a smaller, more specific region in BC, and includes the use of different criteria for site organization and assessment.

Habitat Variables

Geology, topography, stream morphology, climate and vegetation cover all play a critical role in stream health. The CABIN approach uses these characteristics to categorize and then assess test sites for similarities with reference sites. The physical characteristics of a test site are used to assign the site to a reference group for comparison.

These characteristics are important because the natural "pristine" state of a site is dependant upon these traits. For example, a creek with limestone as the primary underlying rock will naturally have a higher pH than a stream with sandstone as the base. If the CABIN test site was not compared to a suitable group of reference sites with similar physical variables results would not accurately assess the health of an area. For example, high pH could be interpreted as the result of a pollutant rather than a natural occurrence.

Physical Properties of Water

The physical properties of water — colour, temperature, turbidity, taste and odour - are useful indicators of what is occurring within a stream. The CBWM program assesses both temperature and turbidity to better understand the condition of studied sites.

The *temperature* of a stream needs to remain within certain limits for healthy aquatic life, and many species take their life stage cues from temperature changes in the water. For example, Westslope Cutthroat Trout (WCT) begin migration to spawning grounds when the temperature is between 7-10 degrees Celsius (Bear, McMahon, and Zale 2007). Figure 15 includes a visual representation of temperature limits for the survival of adult WCT. In green is the optimal temperature range for this species, with the orange-red showing the sub-optimal, or increased stress range. The bright red colour signifies the range at which the temperature increase becomes lethal for WCT. Outside of these temperatures, WCT do not survive.

Temperature is closely correlated with dissolved oxygen levels. Colder water contains higher oxygen levels, which are critical for the majority of stream life in the Rockies. Elevated water temperatures during WCT life stages such as embryo development (when oxygen requirements are particularly high) may result in embryo death or high mortality of alevins (a very young life stage, just after emergence from the egg). For example, if an early spring heat wave occurs and water temperature rises above 12°C, oxygen levels will fall below the guideline for protection of embryos and alevins (British Columbia Ministry of Environment and Climate Change Strategy 2021).

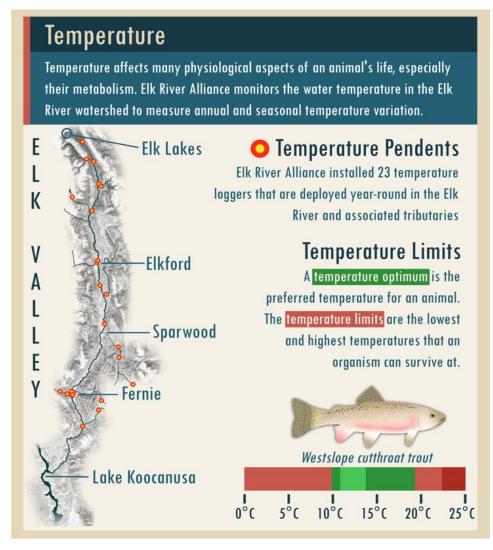


Figure 15. ERA Infographic outlining the importance of temperature to aquatic systems.

Turbidity is a measure of the ability of light to pass through water and is usually a reflection of the amount of sediment ((B.C. Ministry of Environment and Climate Change Strategy 2021b). Excess sediment can negatively affect aquatic life - reduces the amount of sunlight reaching aquatic plants and organisms, settles on the bottom of the stream reducing habitat for benthic invertebrates and smothering fish eggs (Figure 16)

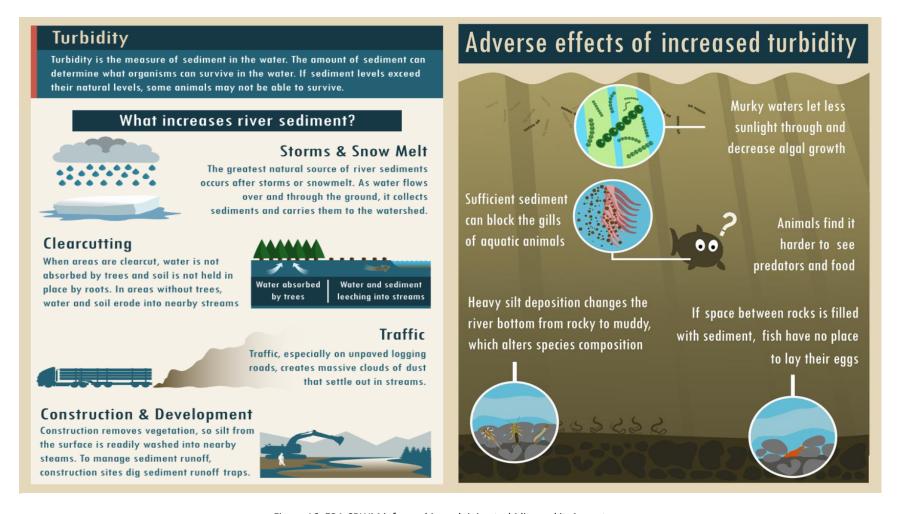


Figure 16. ERA CBWM infographic explaining turbidity and its importance.

Water Chemistry

Water chemistry parameters are important indicators of water quality. These parameters provide insight into the processes happening within a stream and the health of aquatic systems. Changes in water chemistry variables can signify landscape level changes or the introduction of new pollutants.

Dissolved oxygen, pH and conductivity are fundamental parameters measured as part of CABIN protocols. Aquatic life can only survive in water that falls within a specific range of water quality parameters. Unusually high or low measurements for any of these variables may suggest a problem in the stream.

Aquatic animals require enough dissolved oxygen for them to breathe easily. Oxygen levels depend on whether water is flowing or still, whether there are rocks or other obstacles for water to flow over, how many plants are growing in the water, and water temperature. Common causes of low dissolved oxygen are increases temperature, decaying organic matter and weather (cloudy days reduce oxygen production from aquatic plants and algae). Excess nutrients added to the water via sewage or stormwater discharges, agricultural runoff or mine water discharges containing blasting residues can cause excessive algae growth which then decompose, using up oxygen. The amount of dissolved oxygen in water affects the types

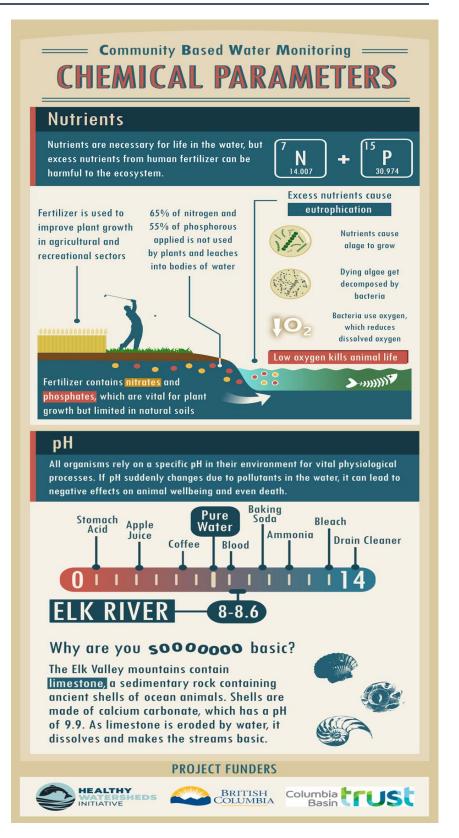


Figure 17. ERA infographic on chemical parameters associated with the CBWM program.

and health of aquatic life present. The lower the oxygen content, the less life that is able to persist in the water.

The pH range for freshwater aquatic life set by BC water quality guidelines is 6.5-9.0 Pure distilled water has neutral pH of 7. The local geology of an area can result in water that is alkaline or acidic. In the Elk River watershed, streams are more alkaline due to a limestone-based geology, and aquatic organisms have adapted to these conditions. When pH levels deviate from the original, natural ambient conditions, there may be direct or indirect effects on the health of aquatic organisms and partial or complete changes in species composition. The pH of water affects the solubility (amount that can be dissolved in water) and bioavailability (amount that can be used by aquatic life) of chemicals in water such as metals or nutrients (Government of British Columbia 2023). Low pH increases metal solubility. Thus, decreases in pH can damage fish gills via increases in dissolved metal concentrations which in, in turn, attach to the surface of fish gills, reducing oxygen uptake. Increases in pH can increase the concentration of the more toxic forms of ammonia in the water, killing fish quickly. (B.C. Ministry of Environment and Climate Change Strategy 2021a). Significant changes in pH can be caused by historic mine wastes, landfill leachate, runoff from cattle feedlots, recent draining of wetlands, asphalt production or disposal, and limestone gravel roads (US EPA 2003).

Conductivity is another measure that can indicate changes in aquatic health. It is a measure of the ability of water to pass an electrical current. Conductivity increases when there are more dissolved mineral salts such as sodium, potassium, magnesium, chloride and sulphate (Chapman 1996). Significant changes in conductivity can be indicative of increased or decreased mineral salts dissolved in the water. In the Elk Valley, high conductivity in stream water is often associated with groundwater influence (because groundwater naturally has higher concentrations of salts); however, an increase in conductivity may point to increased human disturbance. Mining commonly causes increased sulphate concentrations in surface waters. Sodium, calcium, or potassium chloride runoff due to road salting is another common source of increased conductivity.

In addition to measurement of dissolved oxygen, pH and conductivity, the CBWM program includes water samples collected for laboratory analysis of nutrients, total and dissolved metals, and major ions (salts).

Changes in physical and chemical parameters which fall outside of the range of natural variability can cause a cascade of effects on the diversity and productivity of aquatic life. If such changes are observed, further monitoring should be initiated to explore different local stressors as potential causes. From here, additional required mitigation and management measures can be identified. For example, if elevated water temperatures in areas known to be important for WCT spawning are shown to be connected to less vegetation along the streambanks providing shade, mitigation may include planting of fast-growing riparian species such as willow.

If CABIN analyses show a test site in poor condition, water chemistry results can provide vital insight into what is occurring in the system. Often, long term monitoring is needed to detect unusual changes in parameters such as conductivity, and then identify unnatural changes to stream chemistry.

Benthic Invertebrates

A "biological indicator" is an organism that can be used to monitor the health of an ecosystem. CABIN uses benthic macroinvertebrates (small aquatic insects and other species such as aquatic worms) as biological indicators of stream health. While water chemistry variables can provide a "snapshot" of what is happening at a distinct moment in time within an aquatic system, benthic organisms experience the cumulative effects of all the physical and chemical stressors interacting within this system over time. Benthic organisms tend to remain in one general location and can be an indicator of the effects of activities associated with land uses in that area. Changes in the health of an aquatic systems are reflected in the structure of the communities of these organisms within it.

In general, aquatic communities consist of groups (taxa) that are tolerant to pollution and those that are sensitive to it. By comparing the amount of tolerant versus intolerant groups in a community, assumptions can be made about the overall health of a system. For example, mayflies (*Ephemeroptera*), stoneflies (*Plectoptera*) and caddisflies (*Trichoptera*) are all, generally, considered to be sensitive to pollution, while groups like midges (*Chironomidae*), leeches (*Hirudinea*) and worms (*Naididae*) are considered to be more tolerant to pollutants. A high number of midges, leeches and worms and little of anything else is a likely indication of a stream in poor condition (Figure 18).

CABIN assessments use the composition of the benthic macroinvertebrate community (at the taxonomic level of family) within the stream, and their sensitivities, to make assumptions about the health of the system.

STREAM e-DNA

In 2020, the CBWM program was further expanded to include participating in STREAM e-DNA sampling; a trial for a future phase of CABIN monitoring, where additional benthic invertebrate samples are collected and analyzed to a finer taxonomic resolution using DNA analysis (Wright, Robinson, and Hajibabaei 2020). This means benthic organisms can be identified to the species level. STREAM e-DNA is not currently part of the CABIN analysis process, and the aim of these trials is to potentially incorporate this feature in future monitoring efforts.

Although DNA analysis only produces data on presence versus absence of benthic species, it may prove helpful for the early identification of pathogenic species. For example, the *Tubifex tubifex* species of worm can host whirling disease (*Myxobolus cerebralis*), and the presence of *T. tubifex* may indicate a reach is vulnerable to whirling disease infection.

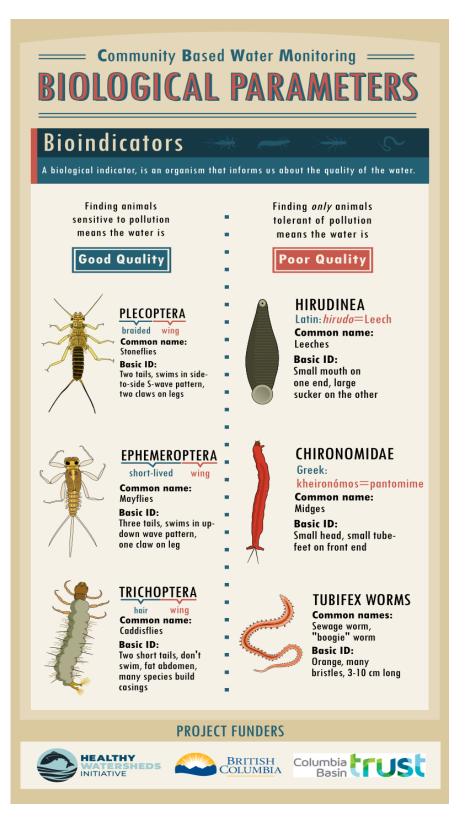


Figure 18. ERA infographic outlining the biological parameters associated with the CBWM program.

Methods

Site Selection

The Elk River Alliance's CBWM sites are chosen based on community input and/or the presence of important habitat that warrants monitoring. Areas of interest are identified using a combination of GIS (Geographic Information System) and in-person assessments. Representative sites along a creek are chosen to capture the effects of different types of land-use or disturbance. Typically, sites are placed upstream and downstream of suspected impacts or stressor source point. Sites may also be placed just above the confluence of tributaries to gain an overall idea of water quality and stream habitat health within a catchment.

Aquatic Habitat Assessment

Test sites were assessed using the techniques outlined in the Canadian Aquatic Biomonitoring Network (CABIN) Field Manual for Wadeable Streams (Carter 2012).

At each site, a detailed site description, including GPS location, surrounding land-use, site drawing, photographs, and reach¹ characteristics are recorded. This includes information on habitat types, canopy coverage, streamside vegetation and the amount of macrophyte (aquatic plants) and periphyton (organisms growing on submerged surfaces – i.e. algae, cyanobacteria, etc.) coverage.

Water chemistry measurements and water samples are taken at the lower end of the reach to avoid disturbing benthic macroinvertebrate communities. This includes the collection of on-site water quality parameters (temperature, dissolved oxygen, pH, conductivity, ORP, turbidity), and any samples that need to be taken for laboratory analysis of metals, nutrients, and major ions.

Next, the benthic macroinvertebrates are collected using the "kick-net" method, which includes 3 minutes of travelling backwards upstream, with a large net placed on the bottom of the stream, and aggressively kicking rocks to send any insects hanging on into the kick-net. Organisms and material collected in the net during these 3 minutes is moved into a sample jar and preserved with the appropriate chemicals.

When STREAM protocols are included, 3 additional 'kick-net' samples are collected, prior to the standard CABIN "kick-net" sampling, using the same protocol but with full decontaminations of the equipment and sampler before each round (Wright, Robinson, and Hajibabaei 2020). Since STREAM focuses on taxonomic identification through DNA, proper decontamination is necessary to avoid tainting the samples. Benthic invertebrate sampling is always performed beginning downstream and moving upstream. STREAM samples are collected in sampling jars and preserved according to STREAM protocols. Only the lower site on each creek (near the mouth) were included in the STREAM program (i.e., COL001, MOR001 etc.).

CABIN requires the sampler to collect information on substrate characteristics. This includes following the kick-net path while counting and measuring 100 pebbles from the bottom of the stream and assessing every 10th pebble for embeddedness. The surrounding substrate, or streambed, material is also assessed based on size and consistency.

Finally, the study site channel characteristics are measured. The width of the stream during high flow (estimated based on bank structure and changes in vegetation) and current flow is measured, as well as

¹ Reach is the length of the stream included in the test site – usually 6 times the stream width.

the slope, depth, velocity and overall discharge of the stream.

For more details on CABIN and STREAM protocols, please see the *Canadian Aquatic Biomonitoring Network (CABIN) Field Manual for Wadeable Streams*, and *STREAM: Procedure for collecting benthic macroinvertebrate DNA samples in wadeable streams* (Carter 2012; Wright, Robinson, and Hajibabaei 2020)

Laboratory Analysis

Basic water quality parameters – temperature, pH, conductivity, and dissolved oxygen – were tested on site by trained ERA staff and volunteers. Samples acquired during site assessments were preserved appropriately and shipped to independent laboratories for further analysis.

Water Chemistry

CARO Analytical Services in Kelowna, BC was responsible for 2020 water chemistry analyses. Typically, ERA CBWM sites are assessed for total and dissolved metals, nutrients, cations and anions (e.g. chloride, sulphate, carbonate) (Appendix C: CARO Reports).

Benthic Invertebrate Taxonomy

ERA contracted Surrey-based, CABIN-approved, aquatic invertebrate taxonomist, Pina Viola (B.Sc. Biology, SFS, SAFIT) to assess benthic macroinvertebrate samples for the CBWM program. She sorted, identified, and performed data entry for benthic invertebrate samples, following CABIN laboratory protocols (Environment and Climate Change Canada 2020).

Data Analysis

As per CABIN Wadable Streams Protocols, all data collected was entered into the Environment and Climate Change Canada (ECCC) national CABIN database, under "CBWQ – Elk study".

In 2021, ERA shifted from using the older Okanagan-Columbia 2010 preliminary model to the new Columbia Basin 2020 model, to perform CABIN assessments. The new model includes 156 reference sites across the Columbia Basin, with 11 of these falling within the Elk River Watershed, an additional 4 in the neighbouring Flathead area, and 1 within the Bull River basin (Stephanie Strachan 2020).

To prepare site data for CABIN analysis, characteristics based on GIS data were assembled. Catchments for each site were delineated using GIS software and analysed for model requirements: drainage area (km2); % grassland; % low shrubland; % water; mean precipitation for October; minimum temperature for December; % sedimentary rock; and maximum slope.

From here the CABIN database sorts sites into smaller groups based on similarities in characteristics to designated groups of reference sites, then performs a BEAST (Benthic Assessment of Sediment) analysis to assess the health of a site, in comparison to similar reference sites, based on the benthic community structure, the functional responses of these invertebrates, and selected habitat variables. These analyses produce "community ellipses" for each site, which is an ordination plot that visually represents how similar reference sites are to each other and where a test site fits into the comparison among sites. The center ellipse represents reference condition. The further out from the center ellipse a test site appears,

the more it has diverged from the reference condition and the more likely it is to be in poor condition.

Where sites appeared to be diverging from reference condition, data were further explored to investigate pattens associated with these sites. Specific water chemistry results were assessed for any notable results. RIVPACS and Bray-Curtis dissimilarities were used to assess issues with benthic community structure.

RIVPACS (River Invertebrate Prediction and Classification System) is an aquatic biomonitoring system used to assess water quality. It measures taxa richness (presence/absence but not abundance), based on expected taxa according to reference sites versus what is observed at a test site. A value of 1, indicates the test site is similar to the reference sites, while values above 1 indicate increasing differences from the reference sites (and more taxa), and values below 1 indicate increasing differences but less taxa, and likely poorer conditions.

Bray-Curtis dissimilarity is a statistical assessment to measure the dissimilarity between sites based on numbers within groups at each site. In CABIN, the Bray-Curtis dissimilarity is used to measure both richness and abundance of test sites compared to the mean values of the reference sites. A value of 0 means that the sites are in good condition, similar to the mean values of the reference sites, while a value of 1 indicates complete dissimilarity.

Results & Discussion

In 2021, 10 sites were assessed across 5 tributaries – Lizard Creek, Alexander Creek, Boivin Creek, Coal Creek and Morrissey Creek. The use of the new Columbia 2020 CABIN model produced very different results from what was expected based on outcomes from the previous model (Okanagan-Columbia 2010 Preliminary model). This new model is specifically tailored to the Columbia Basin and is considered more sensitive that the previous model. While the Okanagan-Columbia covered 2 large basins using only 113 reference sites for the entire area, the new Columbia Basin model, along with focusing on a smaller, more specific area, includes twice as many reference sites as the previous model, as well as a validation dataset for testing the model. Reference groups in the previous model were largely determined by location – i.e. a majority of the sites in group 3 were in the East Kootenays, while Group 2 were primarily from the Okanagan basin - whereas groups within the new model appear to be more evenly spread across the entire region (Gaber 2012; Stephanie Strachan 2020).

The accuracy of some of these new results is uncertain, and ERA is currently investigating explanations for some of the unexpected assessment results — unknown stressors, the ability of the model to represent each site, field or data entry errors, etc. CABIN assessments indicate that most test sites have a similar benthic community structure to their associated reference sites, with the exception of the lower Coal Creek (COL001), lower Morrissey Creek (MOR001), and both Lizard Creek sites (LIZ001, LIZ003). According to the CABIN assessment model, all four of these sites diverge significantly from the designated 'reference condition'.

Lizard Creek

Lizard Creek sites – LIZ001, LIZ003 – were "highly divergent" in 2021 (Figure 19). According to the old CABIN model (Okanagan-Columbia 2010 Preliminary model), LIZ001 (the site near the mouth) fluctuated between being in reference condition to mildly divergent between 2012 and 2021 (Figure 20). With the application of the new Columbia 2020 CABIN model, both Lizard Creek sites were "highly divergent "in 2020 and 2021 (Figure 19, Figure 21, Figure 22). Year to year changes using the new model indicate a steady shift at LIZ001 from reference condition to highly divergent from 2014 to 2017, then remaining at highly divergent from 2017-2021. The previous model did not generate this result and ERA is exploring potential reasons for this dramatic shift in assessment result between models.

Notably, the new Columbia 2020 CABIN model sorted the LIZ001 site for comparison with different reference groups for 2012, 2014 and 2015, meaning the reference sites that LIZ001 was compared to changed. Generally, sites are expected to be compared with the same reference group from year to year (based on the assumption that the fundamental geological, topographic, climate, stream morphological and vegetation cover characteristics remain the same). Capturing the full range of ecological variation of reference sites using an adequate number of sites sampled with sufficient frequency is critical for confident interpretation of CABIN data (S Strachan and Reynolds 2014). The changing assignment of the reference group for the LIZ001 site may indicate model or technician error rather than a truly changing site condition.



Figure 19. CABIN analysis results for Lizard Creek sites from 2012 – 2021 using the Columbia 2020 CABIN model.

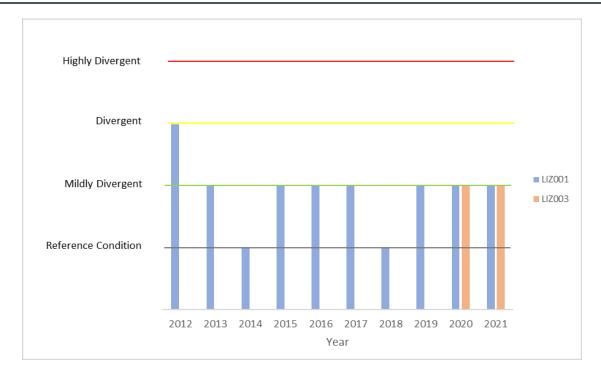


Figure 20. CABIN analysis results for Lizard Creek sites from 2012-2021 using the Okanagan-Columbia 2010 Preliminary model.

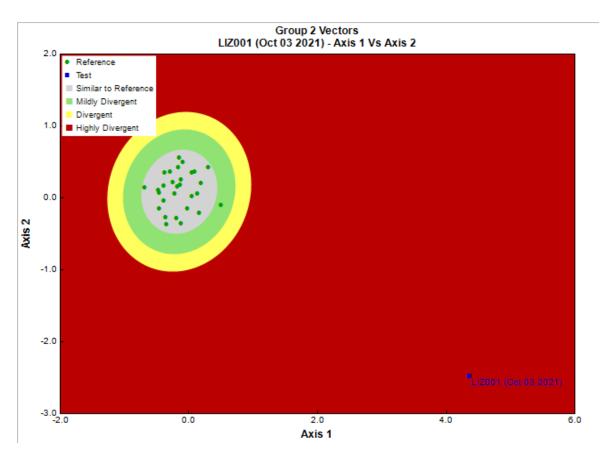


Figure 21. CABIN community ellipses for LIZ001 in 2021.

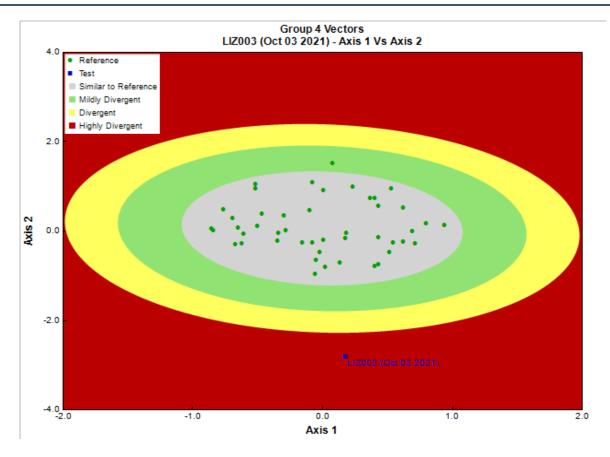


Figure 22. CABIN community ellipses for LIZ003 in 2021.

Both sites differ from reference sites according to the Bray-Curtis dissimilarity (LIZ001: 0.96, LIZ003: 0.93); however, RIVPACS assessment suggests that these sites still have good species richness. This difference may be in part due to a larger number of taxa present (Table 1). %EPT for both sites (37.45% and 60.09%, respectively) is far lower than what would be expected based on the reference site means (91.94% ±7.29; 88.13% ±9.26) but the total abundance of benthic macroinvertebrates was significantly higher than expected according to mean reference site values which may contribute to the unexpected significant divergence from reference condition (i.e. LIZ003, the upper Lizard Creek site, had 18 times abundance of associated reference sites' mean) (Table 1). The high abundance with lower diversity (and low EPT) within the populations at Lizard Creek may signify declining health of the Lizard system; however, without further investigation, it is difficult to eliminate the possibility of model/sampling issues. Comparison of differing methods of benthic invertebrate collection has shown that many metrics display greater differences between methods than between streams (Valois et al. 2009). Comparison of the CABIN method with a "live pick" method showed that streams sampled using the CABIN method may be more likely to be assessed as stressed as they are often lower in many metrics used as indicators of reference conditions, including taxa richness and %EPT (Valois et al. 2009).

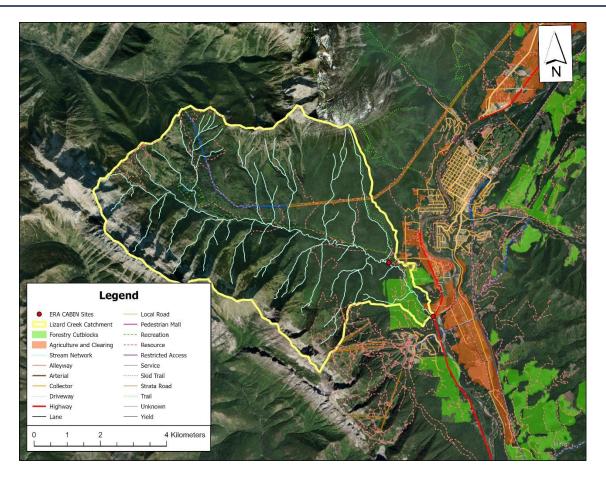


Figure 23. Land use in the Lizard Creek Catchment

Based on ERA's understanding of Lizard Creek, it would be unexpected for LIZ003 to be in very poor health. The LIZ003 site is within Mount Fernie provincial park and Island Lake Lodge is located near the headwaters of the creek (cat skiing, hotel and restaurant operations). There is a resource road that runs alongside Lizard Creek for approximately 9.5 kilometers from Highway 3 to Island Lake Lodge and comes within 300 meters of the creek at different points along the way (See

Figure 23 for more details on land use within the Lizard Creek catchment).

There are a number of tributaries that cross over this road and eventually feed into Lizard Creek. Recreational use is moderate-to-high depending on the time of year, with many formal and informal trails used for skiing, biking, hiking, and horseback riding. Anecdotal observations indicate the presence of fish in good condition in Lizard Creek as well as spawning redd and fry and fingerling rearing area. However, regular visitors to the creek have noted increasing algae growth (particularly filamentous algae). Increased algae growth may indicate increased nutrient inputs to the creek. Photos of Lizard Creek at the downstream site (LIZ001) taken during CABIN monitoring between 2012 and 2021 are not clear enough to confirm this (See Appendix F). Similarly, due to the qualitative nature of visual periphyton coverage categorization during CABIN monitoring, it is difficult to draw definitive conclusions regarding algal growth over time — these assessments seem to suggest a decrease in coverage for 2015 & 2016, but otherwise fluctuate between 1-5mm and 5-20mm coverage categories.

LIZ001 is closer to the Lizard Creek confluence into the Elk River (Figure 21). This site is downstream from the provincial park and has greater potential to be affected by human disturbance from residential development adjacent to the stream as well as recreational uses in the provincial park and adjacent private lands. Proposed future residential development adjacent to Lizard Creek, with associated access roads, water withdrawals from aquifers (which contribute to baseflow in the creek), and increased access for recreational uses may contribute additional impacts to those which may already be occurring. ERA is committed to continued monitoring of Lizard Creek as human activities in the catchment increase.

ERA is currently exploring possible causes for the large, unexpected shift in assessment results produced by the new model. Causes under investigation include technician or data collection errors, issues with the new model's method of grouping sites with similar reference sites, a possible lack of appropriate reference sites and potential unknown stressors affecting the creek.

Preliminary investigations into water quality parameters have not identified a clear cause - all measured water quality variables met BC guidelines for the protection of aquatic life and there have been no consistent worsening trends in dissolved oxygen, pH, conductivity, turbidity or temperature (see the water quality section below). However, trends cannot reliably be determined by "snapshot" sampling. ERA is currently implementing a network of real-time flow, temperature and turbidity monitoring in all CBWM streams. In the meantime, a closer look at the data has allowed ERA to begin flagging specific water quality parameters for more in-depth continued monitoring.

Anecdotal observations of algal growth, led to an exploration of nutrient levels within Lizard Creek – both phosphorus (Figure 24) and sulfate levels (Figure 25) within Lizard Creek are regularly higher than the other CABIN monitored creeks. Although there is currently there is no Water Quality Guideline for Phosphorus in streams in BC, the long-term chronic limit within lakes is 0.015mg/L – this may be a parameter to consider for future examinations. Sulfate measurements at Lizard Creek sites are all well below limits outlined in the BC Water Quality Guidelines (429 mg/L), but these limits are based on a maximum hardness (CaCO3) of less than or equal to 250mg/L, which is at the lower limit of what is measured at Lizard Creek sites (~250-350mg/L Hardness, as CaCO3) – there is no current guideline for above this level & documents suggest that a site-specific upper limit may need to be explored.

Figure 24. Amount of Phosphorus (mg/L) measured at monitoring sites during yearly CABIN sampling between 2012 and 2021.

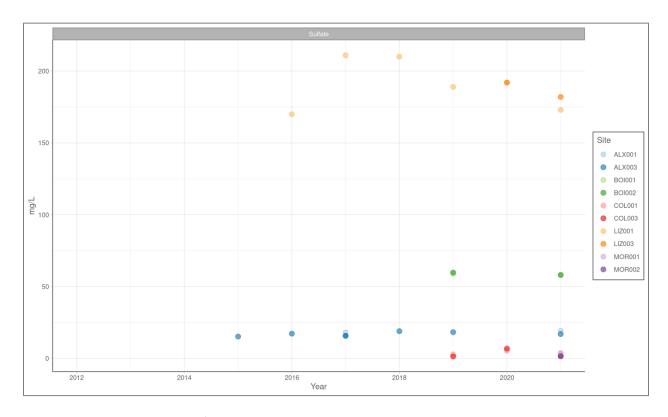


Figure 25. Amount of Sulfate (mg/L) measured at monitoring sites during yearly CABIN sampling between 2012 and 2021.

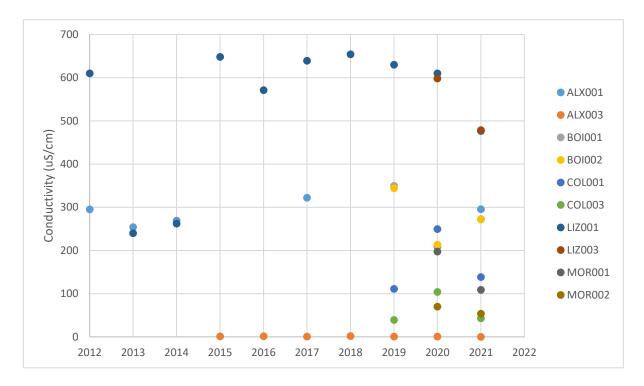


Figure 26. Conductivity at ERA CABIN sites between 2012 and 2021.

Other measured parameters, namely, hardness, conductivity, calcium and magnesium were also flagged, as their levels are higher in Lizard Creek than at other monitoring locations.

Hardness (CaCO3) levels are relatively high at most CABIN monitoring sites, primarily due to the limestone-based geology of the Elk Valley (Figure 27). Limestone is easily eroded and minerals like Calcium and Magnesium are released into streams with this erosion. High amounts of these minerals will also result in higher conductivity values for a stream. Lizard Creek sites see the highest levels of hardness (CaCO3), calcium (mg/L), magnesium (mg/L), and conductivity (uS/cm) of all monitoring locations (Figure 28; Figure 29; Figure 26). These elevated levels are likely related to increased groundwater influence (more interaction with limestone) at this site, but further investigation is needed to confirm this.

Although high amounts of these minerals, in the right conditions, can cause calcite to precipitate on rocks within a stream, naturally elevated levels are not a concern. These elevated levels instead act as evidence to call into question the ability of the CABIN 2020 Columbia Basin model to accurately represent Lizard Creek. Reference sites that are used in the current model to assess Lizard Creek have significantly lower levels of these same parameters – hardness ($\cong 100 \pm 77.36$ mg/L), calcium ($\cong 100 \pm 20.063$ mg/L), magnesium ($\cong 9 \pm 7.544$ mg/L), and conductivity ($\cong 120 \pm 104.00$ uS/cm). Additional investigations will be necessary to continue to explore the validity of this CABIN model for the assessment of Lizard Creek.

Figure 27. Hardness (CaCO3) levels (mg/L) measured at monitoring sites during yearly CABIN sampling between 2012 and 2021.

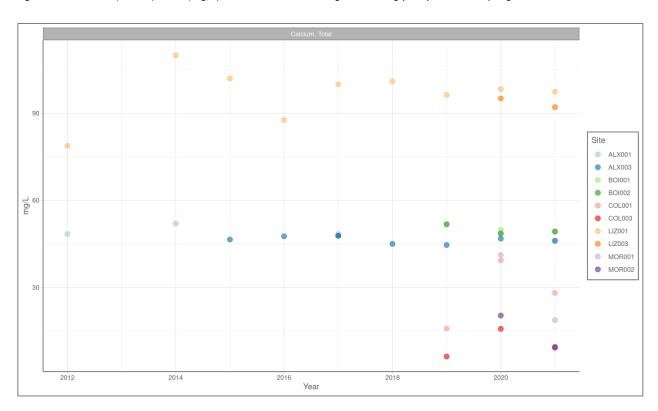


Figure 28. Amount of Calcium (mg/L) measured at monitoring sites during yearly CABIN sampling between 2012 and 2021.

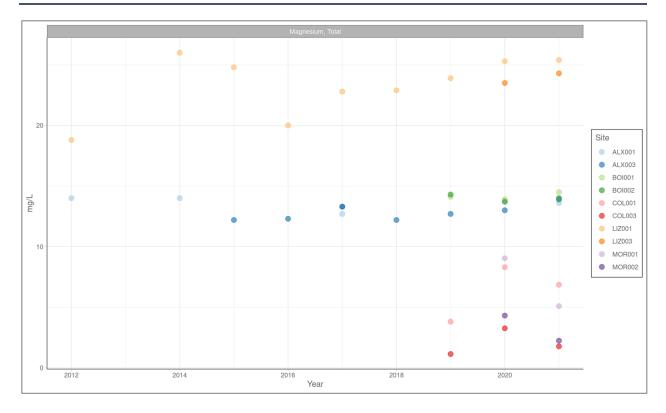


Figure 29. Amount of Magnesium (mg/L) measured at monitoring sites during yearly CABIN sampling between 2012 and 2021.

Alexander Creek

In 2021, both the upstream (ALX003) and downstream (ALX001) sites were in good condition, according to CABIN analysis (Figure 30). Water chemistry variables were also consistent with good health, with all measurements for both sites meeting the BC guidelines for the protection of aquatic life. There have been no consistent trends in dissolved oxygen, pH, conductivity, turbidity or temperature (see the water quality section below). However, trends cannot reliably be determined by "snapshot" sampling. ERA is currently implementing a network of real-time flow, temperature and turbidity monitoring in all CBWM streams.

CABIN results from Alexander Creek sites have been relatively consistent over time, generally remaining in reference condition, however ALX001 was found to be highly divergent in 2012 and divergent in 2017. Further statistical testing (Bray-Curtis, RIVPACS) indicates that sites on Alexander Creek were similar to reference sites in taxa diversity and %EPT.

Alexander Creek runs alongside the Crowsnest highway for about 4 kilometers, is crossed by the CP Rail mainline, and passes a gun range and local logging roads. Fluctuations in divergence may result from intermittent disturbances caused by the use of these areas, combined with events such as runoff from heavy or prolonged rain causing erosion of disturbed areas. Proposed mining development in the upper catchment may increase stressors on Alexander Creek. If mining development goes forward, ongoing monitoring of Alexander Creek will become increasingly important to track changes in stream health.

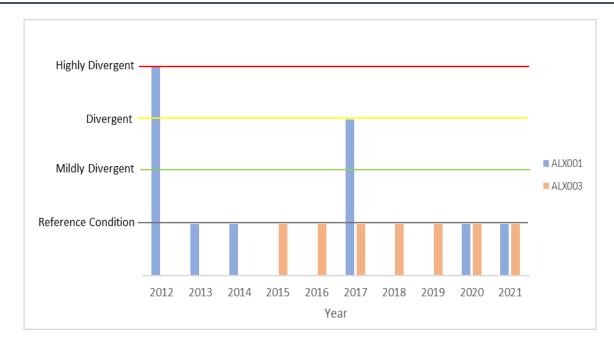


Figure 30. CABIN analysis results for Alexander Creek sites from 2012 - 2021.

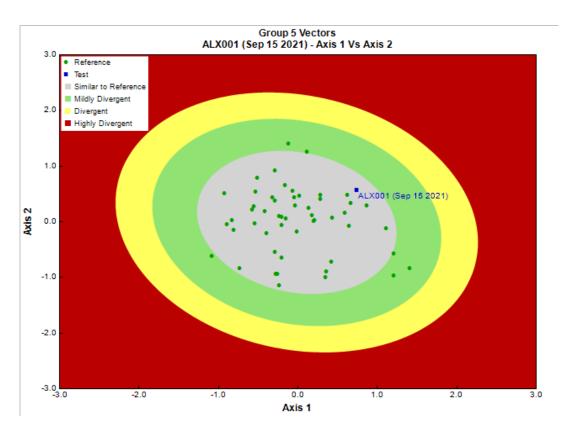


Figure 31. CABIN community ellipses for Alexander Creek's downstream site, ALX001 in 2021.

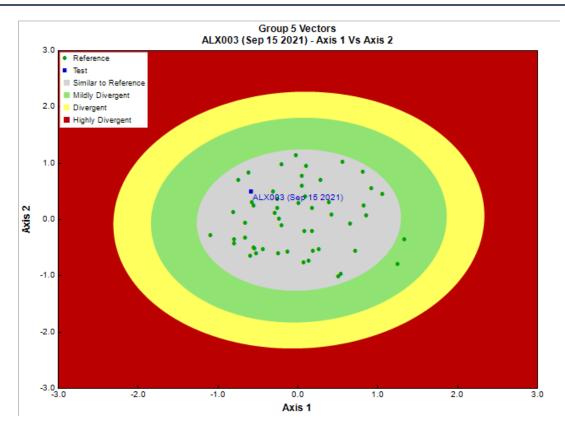


Figure 32. CABIN community ellipses for Alexander Creek's upstream site, ALX003 in 2021.

Boivin Creek

In the three years (2019 to 2021) of monitoring on Boivin Creek, sites have remained in relatively good, stable condition (Figure 33). 2021 CABIN analysis showed that the upper Boivin Creek site (BOI002) remained similar to reference condition, while the lower site (BOI001) shows mild divergence. Further statistical testing suggests that the BOI001 may be experiencing a slightly lower species richness (RIVPACS) which could be contributing to this assessment (Table 1). That said, the site's mild divergence from reference condition is similar to divergence of some individual reference sites which also fall within the mildly divergent ellipse. Therefore, results likely reflect natural variability of benthic invertebrate communities.

ERA began monitoring this site to assess the impacts of artificial riprap that stretches along large sections of the creek as it passes through Elkford. However, CABIN results to date show that the creek is similar to comparable reference sites. Continued monitoring efforts, including implementation of real-time monitoring of flow, temperature, and turbidity will allow for more long-term assessments of the creek and potential impacts of local urban developments. All measured water quality variables met BC guidelines for the protection of aquatic life.

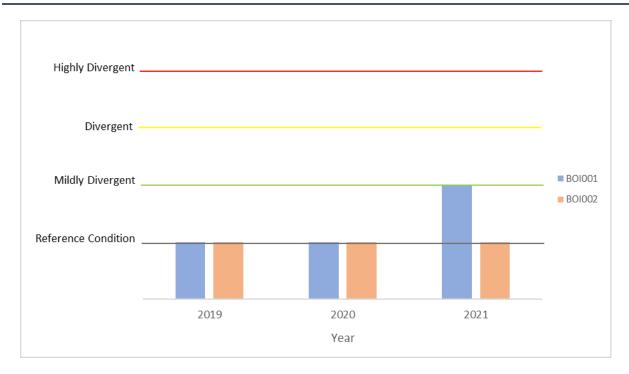


Figure 33. CABIN results for Boivin Creek sites in 2019 - 2021. The upstream (BOI002) site has remained in a similar state to reference condition, while the downstream site (BOI001) is beginning to diverge from this state. Future assessments will allow for ERA to monitor any developing patterns.

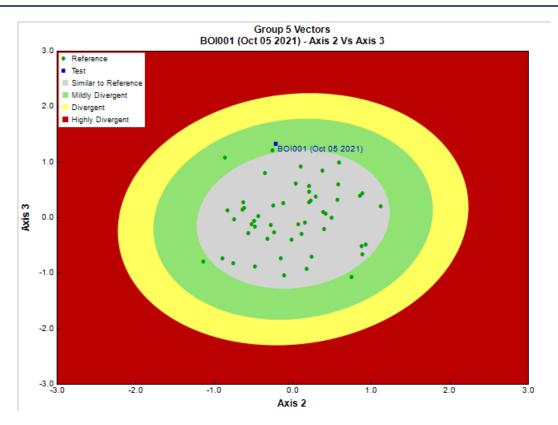


Figure 34. CABIN community ellipses for BOI001 (downstream) in 2021, showing the site to be "mildly divergent".

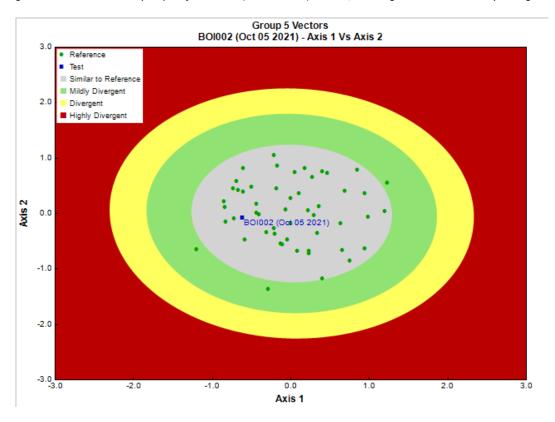


Figure 35. CABIN community ellipses for BOI002 (upstream) in 2021, showing the site to be "similar to reference".

Coal Creek

Coal Creek was added to the CBWM CABIN assessments in 2019. Results indicate the creek is divergent from reference condition, particularly at the site near the mouth (COL 001)(Figure 36). According to additional analyses, both sites along Coal Creek exhibited species diversity diverging from reference sites, with slightly lower taxa richness than reference sites, and significantly lower %EPT (Table 1). Total abundance of individuals was much higher than expected for the lower site (11,820 compared to an estimated reference site value of 1,449.38 \pm 859.74) which may contribute to the highly divergent classification.

All measured water quality variables met BC guidelines for the protection of aquatic life. The Coal Creek sites were established too recently to enable comparison of water quality results over time. Furthermore, as noted for the other creeks in the CBWM program, one-time sampling for water quality is not sufficient for indicating trends.

The COL001 site is downstream of historic mining sites, a decommissioned landfill, cattle grazing, recreational ATV trails, and current clear-cut logging practices. The final kilometer stretch flows through a portion of Fernie before arriving at the sampling site. This urban portion of Coal Creek is confined by riprap and concrete armoring along the sides of the channel. Recreational use at the mouth of the creek in sometimes includes the construction of weirs in the streambed with large rocks and cobble to create swimming or wading areas.

The highly divergent results for the COL001 site are not unexpected, given the multiple historic and current stressors in the catchment. Benthic invertebrates integrate the effects of these multiple stressors, particularly flow, turbidity and temperature, but may also be responding to short and long-term changes in water quality parameters such as nutrients. The consistent categorization of COL001 as "highly divergent" from reference condition over the three years it has been monitored, along with the list of known stressors effecting this stream, give ERA confidence in these results.

ERA will continue to monitor COL001 and COL003 to confirm CABIN results and acquire sufficient data to evaluate trends. If the COL003 site continues to diverge from reference sites, ERA will seek to investigate further, as this site is within the headwaters, and poor conditions are not expected at this location.

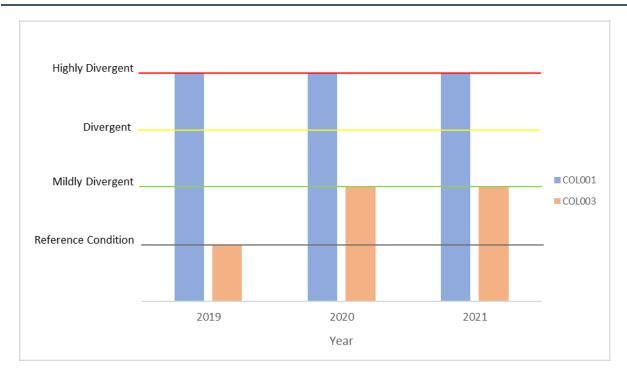


Figure 36. CABIN results for Coal Creek sites in 2019 – 2021.

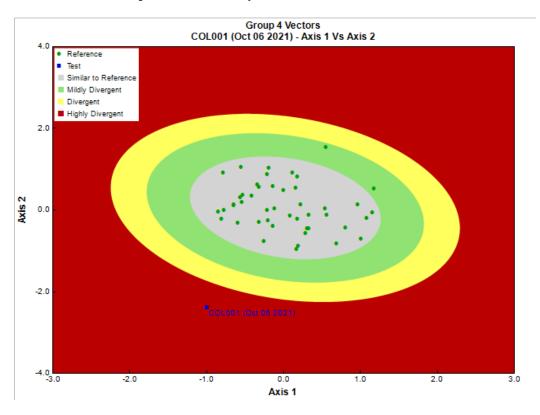


Figure 37. 2021 CABIN analysis community ellipses for the Coal Creek downstream site, COL001, showing the site has significantly diverged from reference condition.

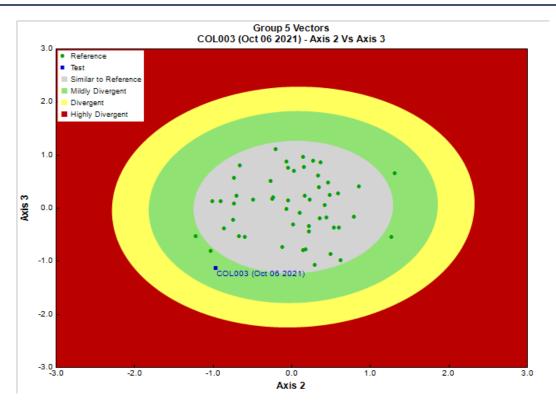


Figure 38. 2021 CABIN analysis community ellipses for the Coal Creek upstream site, COL003, showing the site is just at the edge of mild divergence from reference condition.

Morrissey Creek

2021 was the second year of CBWM assessments for Morrissey Creek. The upstream site, MOR002, was in a condition similar to that of the associated reference sites, while the downstream site, MOR001, was highly divergent (Figure 39). MOR001 was on the higher end of Bray-Curtis scores (0.81992), indicating the taxa diversity at the site was lower than expected. However, EPT values and the number of taxa present were similar to what would be expected from a site in good condition (Table 1). Like COL001, MOR001 also has very high total individual abundance numbers (7340, compared to a mean reference site abundance of 1449.37 ± 859.74).

There were no exceedances of BC Water Quality Guidelines. The Morrissey Creek sites were established too recently to enable comparison of water quality results over time. Furthermore, as noted for the other creeks in the CBWM program, one-time sampling for water quality is not sufficient for indicating trends. Morrissey Creek is part of ERA's real time flow, temperature and turbidity monitoring network, which is in the process of being implemented.

Morrissey Creek originates from a geographically similar location to Coal Creek, with similar historical logging in the upstream reaches. While MOR002 lies above most potential disturbance, MOR001 is downstream of active logging roads, ATV trails, cattle grazing, and an active farming area.

The downstream sites in both Coal and Morrissey Creeks have multiple land use-related stressors in their catchments. Therefore, divergence from reference condition is not unexpected in either. Continued monitoring over time should begin to reveal patterns in site characteristics that may help

identify the cause of these results. Further investigation, outside of CABIN monitoring, will be needed in future to fully understand the dynamics of this stream and the stressors effecting it.

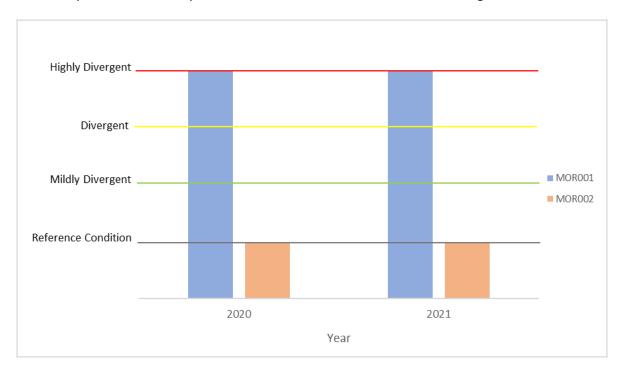


Figure 39. Results of CABIN assessment for Morrissey Creek sites in 2020 and 2021. MOR002 is in "reference condition" while MOR001 was classified as "highly divergent".

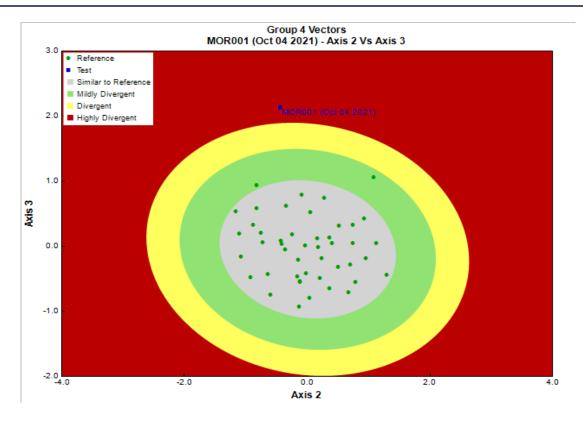


Figure 40. CABIN analysis community ellipses for the Morrissey Creek downstream site, MOR001, showing the site significantly diverging from reference condition.

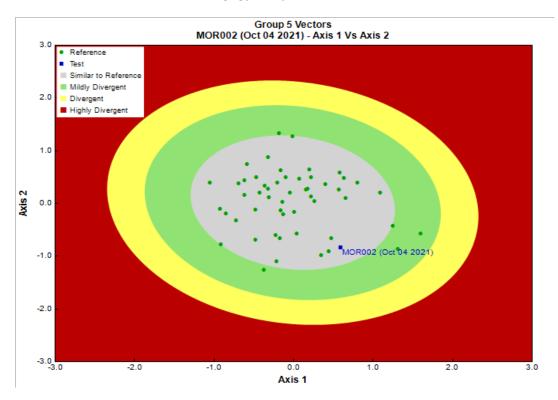


Figure 41. CABIN analysis community ellipses for the Morrissey Creek upstream site, MOR002, showing the site is similar to reference condition.

Benthic Macroinvertebrate Communities

CABIN assessments assign test sites a condition based on the structure of the benthic macroinvertebrate community.

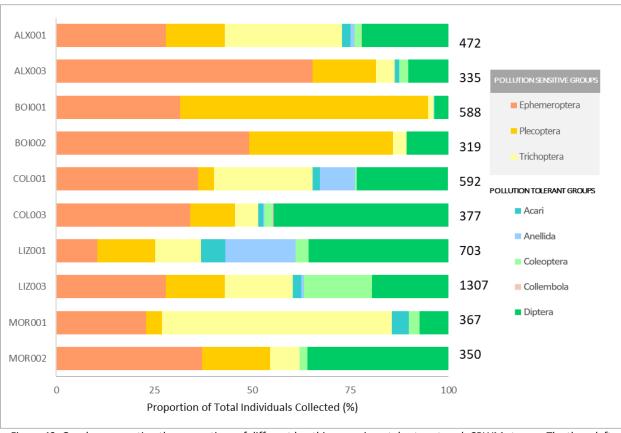


Figure 42. Graph representing the proportions of different benthic macroinvertebrates at each CBWM stream. The three left-most bars represent pollution-sensitive taxa (Ephemeroptera, Plecoptera, Trichoptera), while the taxa on the right are more pollution-tolerant. Higher % EPT is generally considered to equate to healthier streams. The numbers along the right-hand side of the graph are the raw individual counts of all benthic macroinvertebrates found at each site.

Figure 42 shows overall taxa diversity in each CBWM test stream, with the proportion of individuals belonging to each taxonomic order. Typically, pollutant-sensitive orders are on the left (EPT) and more tolerant orders are on the right. Streams with a higher proportion of EPT coincide with those deemed less divergent from reference condition through CABIN assessments. The exception to this is the lower Morrissey site (MOR001) which was assessed as "Divergent" yet over 80% of the taxa present belong are part of the typically pollution sensitive group (EPT). Nearly all of this 80% belongs to one order — *Trichoptera*. These results speak to the importance of biodiversity in a healthy stream.

A healthy ecosystem requires many different species with their own distinct roles to function properly. In areas where one particular taxon begins to take over, there is likely an issue that will eventually take a toll on the entire system. Further, although the EPT taxa are often associated with pollution sensitivity, these sensitivities may vary at finer taxonomic resolutions. *Trichoptera* (caddisflies) are regularly used as indicators of stream health and generally decreased numbers are associated with poor health, but there are certain species that exhibit a higher tolerance to pollution and have been found to thrive in these environments (Houghtona 2004).

Table 1 takes a closer look at these results within benthic communities at each CBWM site using RIVPACS, Bray-Curtis Dissimilarity, %EPT and total abundance. The highlighted cells indicate values that differ significantly (i.e. 2 x standard deviation from the mean) from what is expected from a site in "reference condition".

Table 1. A comparison of CBWM sites, their classification according to 2020 CABIN assessments, and additional statistical measures that address the classification – RIVPACS, Bray-Curtis dissimilarity, and the percent EPT (Ephemeroptera, Plecoptera, Trichoptera). Highlighted cells indicate values that differ from what is expected for a reference site in good condition.

Stream Name	Site ID	CABIN Analysis	RIVPACS O:E (p>0.7)	Bray-Curtis Dissimilarity*	% EPT	Total Abundance
Alexander	ALX001	Reference	1.049	0.533°	72.9ª	9,440ª
Creek	ALX003	Reference	0.943	0.329 ^a	86.2ª	5,583°
Boivin	BOI001	Mildly Divergent	0.744	0.591 ^a	96.4ª	11,760ª
Creek	BOI002	Reference	0.951	0.254°	89.3ª	4,557°
Coal	COL001	Highly Divergent	0.692	0.895 ^b	65.6 ^b	11,820 ^b
Creek	COL003	Mildly Divergent	0.836	0.615 ^a	51.2ª	3,427ª
Lizard	LIZ001	Highly Divergent*	0.895	0.965°	37.4 ^c	14,060°
Creek	LIZ003	Highly Divergent*	1.09	0.930 ^b	60.1 ^b	26,140 ^b
Morrissey Creek	MOR001	Highly Divergent	0.989	0.820 ^b	85.6 ^b	7,340 ^b
Creek	MOR002	Reference	0.841	0.561 ^a	61.8ª	3,181ª
	Reference Mean			(a) 0.396 ±0.137 (b) 0.339 ±0.101 (c) 0.342 ±0.101	(a) 89.2 ±10.0 (b) 91.9 ±7.3 (c) 88.1 ±9.3	(a) 4,661 ±3,118.8 (b) 1449 ±859.7 (c) 1083 ±932.3

^{*} The average dissimilarity value between individual reference sites and the "Reference Mean" that all test sites were measured against.

STREAM e-DNA

STREAM e-DNA analysis presents a list of species present at each sampled site, including general information on the species' ability to tolerate stressors and some general information regarding species richness at each site.

The report identifies the presence of *Tubifex tubifex*, one of the two host species necessary for the presence of whirling disease, caused by the *Myxobolus cerebralis* parasite. *Tubifex tubifex* was identified at MOR001 and LIZ001, as well as at BOI001 in previous years. There are no known cases of whirling

disease in British Columbia to date, but it is widespread in the neighbouring parts of Alberta, including the Oldman watershed bordering the Elk River watershed (Veillard and James 2020). If whirling disease were to enter BC, these creeks could be a high-risk area for an outbreak.

The initial discovery of this species at Boivin Creek has led to the development of the 'Elk Valley Whirling Disease Project', an ERA outreach and monitoring initiative within the Elk Valley to identify other potentially high-risk locations and educate to prevent the introduction of this disease.

The detailed STREAM report is available in (Appendix E: Stream Report).

Water Quality Trends

ERA's CBWM program monitors water quality parameters over time to assess long-term trends. Data on pH, temperature, turbidity, dissolved oxygen concentration, and discharge are available as far back as 2012.

рН

PH levels at all sites have been consistent over time (Figure 42). All areas assessed remained within the 6.5 to 9 pH BC Water Quality Guideline limits for freshwater aquatic life (British Columbia Ministry of Environment and Climate Change Strategy 2021). Stream pH is primarily a function of surrounding geology, so the Elk Valley's predominantly limestone formations result in high pH values. Aquatic life in these areas has adapted to high pH conditions. If values deviate outside of these limits, damage to current aquatic communities and a complete change to the species composition of the stream can occur (B.C. Ministry of Environment and Climate Change Strategy 2021a).

pH at sites with a longer sampling history (ALX001, ALX003 and LIZ001) appears to be decreasing from 2018 to 2021, however this may be a result of instrument error or other sampling issues. Should pH continue to decline at sampling sites, further investigation may be warranted.

Both upper Morrissey and Coal sites show lower pH than other sites. Both of these sites are located higher in the landscape than other sites and are from neighbouring catchments. It is likely these two sites have lower groundwater influence than other sites, resulting in lower pH.

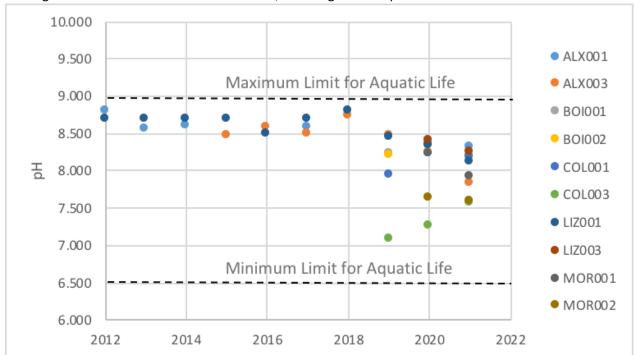


Figure 42. pH values for CBWM sites from 2012-2021. All sites remain within the range of limits outlined within the BC Water Quality Guidelines.

Temperature

In light of the potential effects of climate change on the Elk River system, understanding long-term temperature trends is a priority for ERA. Typically, aquatic life can only survive within specific ranges of temperatures. For example, WCT can only survive in waters between $0-25^{\circ}$ C (Bear, McMahon, and Zale 2007).

Temperatures measured during CABIN monitoring varied considerably from sampling year to sampling year at all sites (Figure 43). However, this can be attributed to natural climatic variability and different sampling dates. Although all sites in CABIN are monitored during low flow conditions between the end of August and the beginning of November, relatively large fluctuations are expected during this period, and a single annual measurement is insufficient to understand long term trends. Overall, temperatures remained within the critical limit for important local species like the WCT and bull trout (DFO 2017).

Like other measured parameters, as temperate can fluctuate from day to day (and within the day). A single annual measurement is not sufficient to detect long term trends, and CBWM measurements are taken for CABIN analysis. In depth analysis of temperature is only possible with ongoing, frequent monitoring using instream logging equipment. To this end, as part of its broader monitoring program, ERA has developed a separate hydrometric monitoring program to examine stream temperature throughout the Elk Valley in more detail.

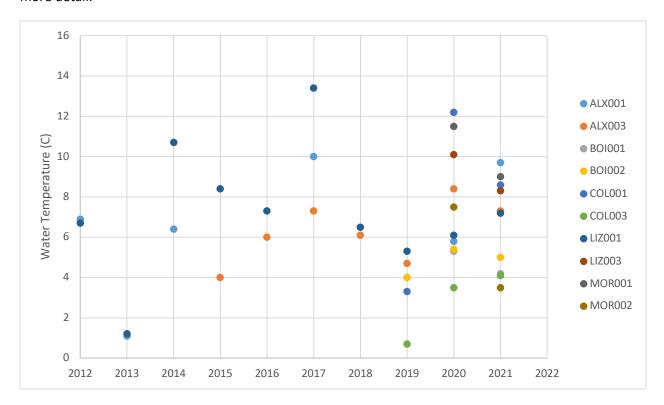


Figure 43. Temperature values for CBWM sites from 2012-2021.

Dissolved Oxygen

The concentration of dissolved oxygen (DO) at all CBWM sites has remained stable over time and is consistently above the BC Water Quality Guideline long-term minimum level of 8mg/L (Figure 44)(British Columbia Ministry of Environment and Climate Change Strategy 2021). Dissolved oxygen measurements are more consistent across sites in 2021, this is likely due to the use of new, more accurate equipment (YSI ProDSS). This consistency amongst these measurements is expected to be observed in future.

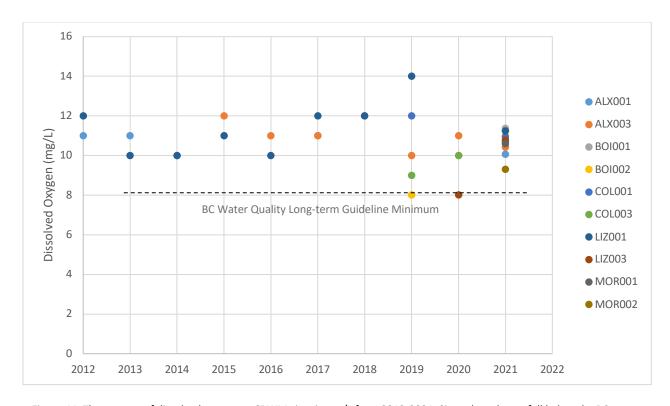


Figure 44. The amount of dissolved oxygen at CBWM sites in mg/L from 2012-2021. Site values do not fall below the BC water Quality Long-term Guideline minimum for Freshwater Aquatic Life (8mg/L).

Turbidity

Canadian Water Quality guidelines suggest that environmental samples vary within the normal range of 1 to 1000 NTU but that turbidity as low as 25 NTU can begin to have a negative effect on fish growth (Canadian Council of Ministers of the Environment 1999). Since 2012, CBWM site turbidity readings have remained below 4 NTU, with most readings below 2 NTU.

ERA staff and community observations indicate all tributaries in the Elk River watershed experience significant turbidity spikes during rainfall events and spring freshet. However, all monitored creeks tend to have low turbidity readings during low-flow conditions, with turbidity spikes generally being indicative of upstream disturbance coupled with high rainfall/snowmelt events, particularly during the May-July freshet.

According to the BC Water Quality Guidelines, turbidity is only a concern when the value changes by 8 or more NTU for 24 hours from the ambient turbidity level, or 2 NTU for 30 days (British Columbia Ministry of Environment and Climate Change Strategy 2021). Annual single occurrence sampling is not sufficient to detect these changes. ERA has been working with a PhD candidate from the university of Auckland to develop a program to test a low-cost sensor that hopes to enable continuous turbidity measurements throughout the year.

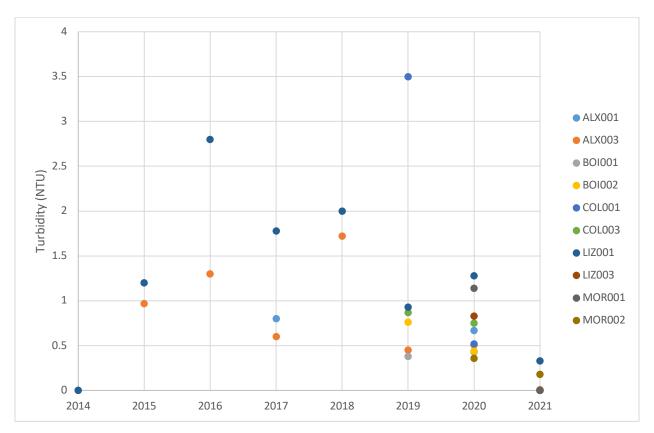


Figure 32. The turbidity (NTU) measured at CBWM sites from 2014-2021.

Conductivity

In general, conductivity levels for a freshwater river system range between 0 and 1000 uS/cm – conductivity levels above this are usually indicative of a saltwater system. Although all monitored sites fall within this range, the Lizard Creek sites have significantly higher conductivity levels than the other sites. This plot also shows a steep decrease in conductivity levels between 2012 and 2013, followed by levels more than doubling in 2015. Although conductivity levels can fluctuate, the large change may be a result of some added stressor. Further investigation into this trend is recommended.

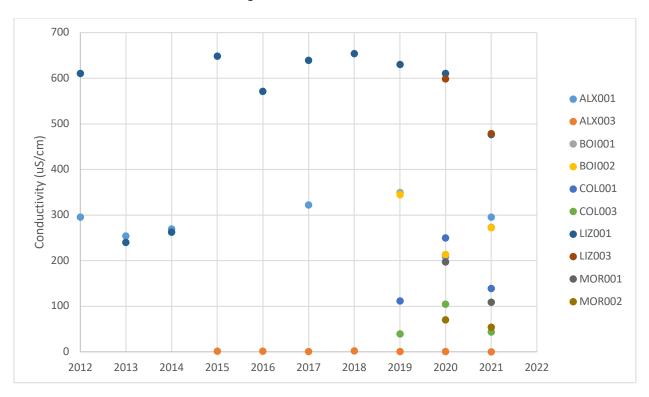


Figure 45. Conductivity levels measured at CBWM sites from 2012-2021.

Discharge

Discharge, referring to the volume of water flowing through a section of stream at a given time, was assessed during low flow conditions for each site over time (

Figure 46). Discharge measurements at all sites remained relatively stable between years, except COL001, which appeared to decrease by 1.76 m3/s between 2019 and 2020. This is not considered abnormal as Coal Creek has a high gradient and frequently experiences fluctuating flow and regular flood events.

Between the years of 2012 to 2020 discharge was measured using the CABIN recommended protocol, measuring depth and velocity at 5 panels across the stream and the average values were used to calculate an estimated discharge for the stream. In 2021, discharge measurements were calculated using the more accurate mid-section method (and a minimum of 20 panels across a stream). ERA is exploring the practicality of using methods that adhere to BC hydrometric RISC standards in CABIN monitoring.

Like other measured parameters, discharge can fluctuate from day to day (and within the day). A single annual measurement is not sufficient to detect long term trends, and CBWM measurements are taken for CABIN analysis. In depth analysis of discharge is only possible with ongoing, frequent monitoring (e.g. hourly logging). To address this, ERA has begun developing a hydrometric monitoring program to examine discharge in more detail.

Figure 46. Discharge measurements calculated for CBWM sites from 2012- 2021.

Metals & Nutrients

Water chemistry data collected during the 2021 sampling period indicates there were no exceedances in metals or nutrients based on BC Water Quality Guidelines.

Selenium and Calcite

The Elk Valley has a long history of mining, and its residents are very aware of the associated environmental issues with this industry. Selenium and calcite are two constituents of serious concern in this region.

Selenium (Se) is a naturally occurring element and low levels are essential for the health of both humans and animals (Janz et al. 2010). Unfortunately, selenium actively bioaccumulates in tissues, and in higher concentrations, begins to become toxic, eventually causing reproductive issues and deformities (Teck Resources Ltd. 2015). Waste rock, resulting from coal mining operations, contains selenium. During the mining process, this rock is broken into smaller pieces, creating more opportunity for air and water to interact with the rock. This results in the conversion of selenium into its soluble form, which is then released in water seeping through these waste rock piles into local waterways (Teck Resources Ltd. 2015). The BC water quality guideline for the protection of aquatic life is $2 \mu g/L$ (micrograms/litre). The BC human drinking water consumption guideline is $10 \mu g/L$ (British Columbia Ministry of Environment and Climate Change Strategy 2021)

Calcite (CaCO3) is also naturally occurring and is formed when calcium (Ca) and carbonate (CO3) ions react under saturated conditions (Janz et al. 2010). Calcite concretion in streambeds, specifically downstream of local coal mining operations, has become an increasing concern in the Elk Valley. Although calcite precipitates occur naturally, the waste rock produced from mining has high concentrations of both calcium and carbonate which can solidify on large stretches of stream. Supersaturated conditions cause concretion of the streambed which can negatively affect aquatic life by actively eliminating benthic invertebrate habitat (Barrett, Weech, and Orr 2016). High amounts of calcite precipitate correlate with decreased %EPT and %Ephemeroptera (Golder Associates Ltd. 2014). There are no water quality guidelines associated with calcite in rivers, and as the Elk River watershed is primarily calcite-rich limestone, local rivers are naturally high in this substance (Golder Associates Ltd. 2014). Assessments of calcite usually measure the amount of solidified deposits within a stream through pebble counts (Barrett, Weech, and Orr 2016). CBWM monitoring includes a pebble count which should allow ERA to see any major deposits if present. To date, no major calcite deposits have been seen during monitoring. ERA may begin to explore options for more robust calcite monitoring, at the request of advisors on the Elk River Watershed Monitoring Collaborative.

Tributary catchments assessed with ERA's CBWM program are not affected by contemporary mining activities and are not expected to experience related contaminant issues. Selenium concentrations at the CBWM sites do not exceed reference levels and remain below the water quality guideline for freshwater aquatic life (Figure 47) (British Columbia Ministry of Environment and Climate Change Strategy 2021). For comparison, Figure 48 displays selenium concentrations in the Elk River mainstem near the outflow to Lake Koocanusa, (the Elk receives selenium loadings from upstream mines), and compares the levels found in ERA's CBWM assessed tributaries in 2020. The concentrations at these tributaries are well below what is now observed in the Elk River mainstem and are similar to those in the Elk River in the 1990s.

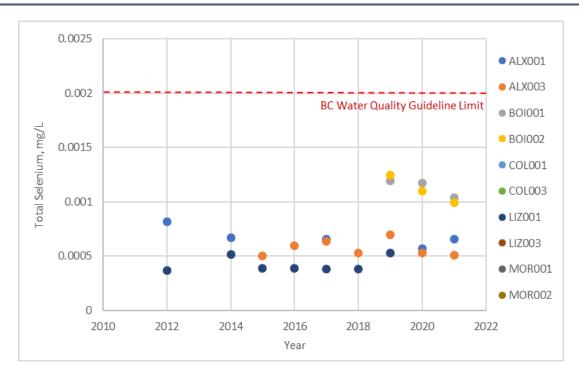


Figure 47. Total selenium concentrations at CBWM sites from 2012 to 2021. All concentrations are well below the BC water quality guideline of 0.002 mg/L ($2\mu g/L$).

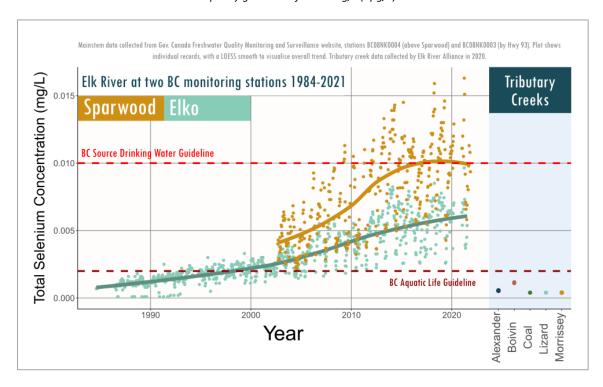


Figure 48. Total selenium in the Elk River mainstem at the outflow to Lake Koocanusa. Approximate concentrations at CBWM tributaries are included to the right and coincides with Elk River concentrations in the 1990s.

Study Limitations

A breakdown of some of the potential limitations for the 2021 CBWM sampling season.

Table 2. Outline of the potential limitations of ERA's Community-based Water Monitoring program

Aspect	Constraint	Comments on Limitations		
Team competency/ experience	No	Teams performing site assessments are trained in CABIN protocols through either the Canadian Government or Living Lakes Canada, but many were inexperienced in applying them to new ERA sites. STREAM e-DNA sampling was new to the program in 2020, and although field teams received training, it is still a new component of ERA's CBWM program. As the team continues to use CABIN/STREAM and adjust to the new protocols team members gain experience, improving confidence in data collection and assessment.		
Timing / weather / seasonality	No	All monitoring is completed during low flow conditions, typically between August and November. This relatively large time window likely allows for fluctuations in some parameters, like temperature, may occur naturally rather than signify any important changes to the study site.		
CABIN Model	Likely	In 2020 a new CABIN model was produced for the Columbia Basin. Prior to 2020, an Okanagan-Columbia Basin model was used. In 2021, ERA chose to assess sites using the new model. However, results are substantially different than with the previous model. ERA is currently investigating these issues to explore whether they are a result of unknown stressors on the aquatic systems, issues with the new model's ability to sort and assess ERA's sites, GIS, or field technician error.		
Scope	No	The scope was clearly defined and realistically achievable within the designated timeframe.		
Proportion of task achieved, and further work which might be needed	Maybe	All sites currently part of the program were successfully sampled and assessed, but there is room for improvement and expansion. The CBWM program aims to create a better understanding of watershed health. Increasing the number of sites across different watershed areas and incorporating a greater variety of habitats may be necessary to better understand overall ecosystem health.		
Resources	No	Through the ERA board of directors and local partnerships, ERA staff have access to a diverse group of experts in various scientific fields. With the development of the Elk River Watershed Monitoring Collaborative, ERA's CBWM program focus will aim to align with the initiatives of this group and will gain further expertise in a number of different fields through its involvement in this program. Currently, ERA has limited access to industry-standard equipment. In 2021, ERA was able to upgrade equipment. Physical water quality parameters were assessed using the YSI ProDSS which increases the accuracy of measurements. Further, although CABIN data collection only requires a "head tube" for velocity measurements, ERA seeks to align data with BC RISC standards. In 2021,		

Aspect	Constraint	Comments on Limitations		
		discharge was calculated using velocity measurements taken by a Global Water Flow Probe.		
		Although results are considered accurate and are comparable to more technical instruments (like Sontek's FlowTracker), velocity measurements are only available to the nearest 0.1 m/s and results do not adhere to BC RISC requirements.		
Access	No	All sites were accessible. Initial CBWM site selection includes evaluating the accessibility of a site prior to inclusion in the program.		

Conclusion & Recommended Actions

ERA's CBWM program is an ongoing program used to assess streams of concern identified through research and community input. 2021 methodology continued to center around CABIN-based assessments and marked the second year of STREAM e-DNA sampling.

Data assessment utilized the newly established 'Columbia 2020' CABIN model. The new model uses a new group of parameters to categorize sites and is better suited to the area than the previous model. Results produced from this new model significantly altered the assessment results for a number of monitoring sites, however, an adjustment period is expected to correctly apply and understand this new model. The new model has been applied to historical data and in some cases, this reassessment has result in altered historical results. Further investigation going forward will help determine the cause of these altered results and assess next steps.

Based on this new CABIN model, most study sites are in relatively healthy condition, with the exception of the Coal Creek site, COL001, the Morrisey Creek site, MOR001, and both Lizard Creek sites, LIZ001 and LIZ003. Both COL001 and MOR001 have large amounts of upstream development, and both are new sites. It will take additional sampling years to establish site norms and differentiate between stable fluctuations in their state and an ongoing trend in aquatic habitat. Analysis of water quality parameters associated with these sites does not indicate any obvious red flags due to exceedances of water quality guidelines that would point to causes for divergence, but the diversity of the benthic communities at these locations appears abnormal compared to reference condition sites. Continuing to monitor these sites and watching for patterns in water quality parameters over time, is a priority going forward.

The unexpected results for the Lizard Creek sites are a concern given the creek's importance in cutthroat trout population recruitment (Elk River Alliance 2020). Although there are no specific exceedances of any water quality parameters based on BC guidelines, the benthic communities differ from what is expected from a typical healthy aquatic habitat. For each of these sites that have been assessed as "highly divergent", the total abundance of benthic invertebrates has been significantly higher than at associated reference sites. Furthermore, based on a number of measured water quality parameters, Lizard Creek may have unique conditions that are not captured by assigned reference sites (elevated alkalinity, hardness, calcium, magnesium, etc.). Due to the nature of CABIN models, which match a test site with a collection of specific reference sites and then compare the benthic communities, its possible that these high abundances have exaggerated how different the sites are, and produced these more extreme results, or that the differences in the natural state of this creek and reference creeks is too great to compare, yielding inaccurate results.

Understanding why these shifts in state have occurred, whether it is a data error, CABIN model issue, or a sign of a quickly degrading important aquatic habitat, is a high priority. Lizard Creek has been flagged as a high priority creek for more in-depth monitoring.

ERA has established and continues to engage with the Elk River Watershed Collaborative Monitoring Program. With the growth of new partnerships, the development of new research questions and access to previously inaccessible data, ERA hopes to continue to expand the CBWM program in the coming years and integrate ERA CABIN sites with the monitoring collaborative's recommendations to improve our understanding of watershed health. The primary focus will continue to be filling in current data gaps and finding answers to the local community's environmental concerns. ERA will seek to engage the ERWCMP

on the potential issues with Lizard Creek and hopes to enlist this group to take a leading role in new monitoring efforts on this Creek.

Literature Cited

Barrett, Tim, Shari Weech, and Patti Orr. 2016. "Evaluation of Calcite Effects on Aquatic Biota in the Elk Valley (2014 & 2015)." Minnow Environmental Inc. https://www.teck.com/media/Calcite-Effects-on-Aquatic-Biota-2014-2015-Report.pdf.

B.C. Ministry of Environment and Climate Change Strategy. 2021a. "pH Water Quality Guidelines (Reformatted from: British Columbia Ministry of Environment, 1991. Ambient Water Quality Criteria for pH)." Water Quality Guideline Series. Victoria, B.C.

https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-quality-guidelines/approved-wqgs/bc_env_ph_waterqualityguidelines_technical.pdf.

———. 2021b. "Turbidity, Suspending and Benthic Sediments Water Quality Guidelines (Reformatted from: Ambient Water Quality Guidelines for Turbidity, Suspended and Benthic Sediments - Technical Appendix Prepared for the Ministry of Environment, Lands and Parks by Cadmus Group Inc. and MacDonald Environmental Sciences Ltd. 1997)." Water Quality Guideline Series, WQG-18. Victoria, B.C. https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-quality-guidelines/approved-wqgs/bc_env_turbidity_waterqualityguideline_technical.pdf.

Bear, Elizabeth A., Thomas E. McMahon, and Alexander V. Zale. 2007. "Comparative Thermal Requirements of Westslope Cutthroat Trout and Rainbow Trout: Implications for Species Interactions and Development of Thermal Protection Standards." *Transactions of the American Fisheries Society* 136 (4): 1113–21. https://doi.org/10.1577/T06-072.1.

British Columbia Ministry of Environment and Climate Change Strategy. 2021. *British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture - Guideline Summary*. Victoria, B.C. https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-quality-guidelines/approved-wqgs/wqg_summary_aquaticlife_wildlife_agri.pdf.

Canadian Council of Ministers of the Environment, ed. 1999. *Canadian Environmental Quality Guidelines*. Publication / Canadian Council of Ministers of the Environment, no. 1299. Hull, QC: CCME. https://ccme.ca/en/res/total-particulate-matter-en-canadian-water-quality-guidelines-for-the-protection-of-aquatic-life.pdf.

Carter, Lesley. 2012. *Canadian Aquatic Biomonitoring Network, Field Manual - Wadeable Streams.* Dartmouth, N.S.: Environment Canada. https://central.bac-lac.gc.ca/.item?id=En84-87-2012-eng&op=pdf&app=Library.

Chapman, Deborah, ed. 1996. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water Environmental Monitoring. 2. ed. London: E & FN Spon. https://apps.who.int/iris/bitstream/handle/10665/41850/0419216006_eng.pdf;jsessionid=35E83B3687 EF19CB2D37AF3274089861?seguence=1.

DFO. 2017. "Recovery Potential Assessment of Bull Trout, Salvelinus Confluentus (Saskatchewan–Nelson Rivers Populations)." DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2016/050. https://waves-vagues.dfo-mpo.gc.ca/Library/40595900.pdf.

Elk River Alliance. 2020. "Elk River Westslope Cutthroat Trout (WCT) Research Initiative: 2019 Report."

Environment and Climate Change Canada. 2020. CABIN Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples.

http://publications.gc.ca/collections/collection_2021/eccc/En84-86-2021-eng.pdf.

Gaber, Leon. 2012. "A Predictive Model for Bioassessment of Streams in the Columbia-Okanagan Area of British Columbia Using the Reference Condition Approach: 2010." Report prepared by Water Protection and Sustainability Branch, B.C. Ministry of Environment.

Golder Associates Ltd. 2014. "Calcite Treatment Technologies."

https://www2.gov.bc.ca/assets/gov/environment/waste-management/industrial-waste/industrial-waste/mining-smelt-energy/area-based-man-plan/annexes/j2_calcite_treatment_technologies.pdf.

Government of British Columbia. 2023. "Canada-BC Water Quality Monitoring Program. pH." https://www2.gov.bc.ca/gov/content/environment/air-land-water/water-quality/water-quality-monitoring/canada-bc-water-quality-monitoring-program/water-quality-parameters.

Houghtona, David C. 2004. "Utility of Caddisflies (Insecta: Trichoptera) as Indicators of Habitat Disturbance in Minnesota." *Journal of Freshwater Ecology* 19 (1): 97–108. https://doi.org/10.1080/02705060.2004.9664517.

Janz, David M, David K DeForest, Marjorie L Brooks, Peter M Chapman, Guy Gilron, Dale Hoff, William A Hopkins, Dennis O McIntyre, Christopher A Mebane, and Vincent P Palace. 2010. "Selenium Toxicity to Aquatic Organisms." *Ecological Assessment of Selenium in the Aquatic Environment*, 141–231.

Ktunaxa Nation Council. 2022. "Ktunaxa Nation. Celebrating Who We Are." https://docs.google.com/viewerng/viewer?url=http://www.ktunaxa.org/wp-content/uploads/KNC-Brochure2019.pdf&hl=en_US.

NWP Coal Canada Ltd. 2014. "Crown Mountain Coking Coal Project: Project Description Executive Summary." https://iaac-aeic.gc.ca/050/documents/p80087/100512E.pdf.

Strachan, S, and T Reynolds. 2014. "Performance of the Standard CABIN Method: Comparison of BEAST Models and Error Rates to Detect Simulated Degradation from Multiple Data Sets." *Freshwater Science*, no. 33: 4.

Strachan, Stephanie. 2020. "Reference Model Supporting Documentation for CABIN Analytical Tools: Columbia Basin 2020." Environment and Climate Change Canada. https://cabin-rcba.ec.gc.ca/Cabin/ModelDocs/Columbia2020_EN.pdf.

Teck Resources Ltd. 2015. "Elk Valley Water Quality Plan." https://www.teck.com/media/2015-Water-elk_valley_water_quality_plan_T3.2.3.2.pdf.

US EPA. 2003. "CADDIS Volume 2. About Stressors. pH." https://www.epa.gov/caddis-vol2/ph.

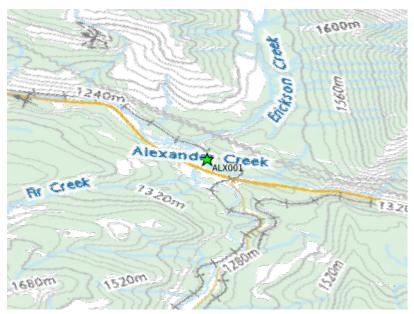
Veillard, Marie, and Clayton James. 2020. *Status of Whirling Disease in the Crowsnest River 2019: Technical Report*. https://doi.org/10.13140/RG.2.2.15044.04486.

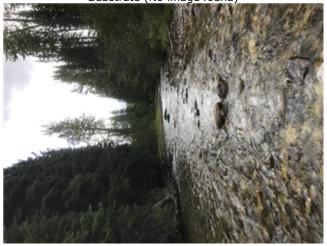
Wright, Michael, Chloe Robinson, and Mehrdad Hajibabaei. 2020. "STREAM: Procedure for Collecting Benthic Macroinvertebrate DNA Samples in Wadeable Streams." https://stream-dna.com/wp-content/uploads/2021/03/Sampling-procedure-for-DNA_STREAM-v1.1.pdf.

Appendix A: CABIN Reports

Site Description

Study Name	CBWQ-Elk		
Site	ALX001		
Sampling Date	Sep 15 2021		
Know Your Watershed Basin	Central Kootenay		
Province / Territory	British Columbia		
Terrestrial Ecological Classification	Montane Cordillera EcoZone		
	Northern Continental Divide EcoRegion		
Coordinates (decimal degrees)	49.67403 N, 114.77972 W		
Altitude	1229		
Local Basin Name	Alexander Creek		
	Elk River		
Stream Order	4		




Figure 1. Location Map

Across Reach Aerial (No image found)

Down Stream Substrate (No image found)

Up Stream

Cabin Assessment Results

Reference Model Summary					
Model	Columbia Basin 2020				
Analysis Date	December 06, 2023				
Taxonomic Level	Family				
Predictive Model Variables	Altitude				
	Drainage-Area				
	Longitude				
	Natl-Grassland				
	Natl-ShrubLow				
	Natl-Water				
	Precip10_Oct				
	Reach-%CanopyCoverage				
	Sedimentary				
	Slope				
	SlopeMax				
Temp12_DECmin					

Reference Groups	1	2	3	4	5	6
Number of Reference Sites	13	24	28	35	32	15
Group Error Rate	53.8%	55.2%	34.1%	52.2%	23.1%	29.4%
Overall Model Error Rate	39.4%					
Probability of Group Membership	1.2%	3.0%	3.9%	7.9%	82.5%	1.5%
CABIN Assessment of ALX001 on Sep 15,	Similar to Reference					
2021						

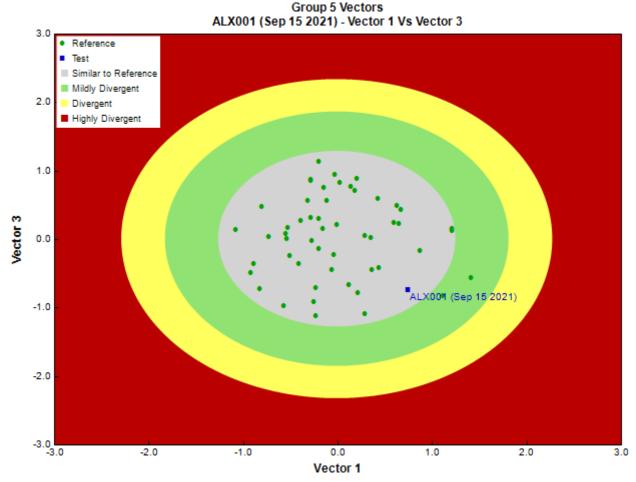


Figure 3. CABIN ordination assessment of the test site with the predicted group of reference sites. Each axis represents the relative abundance of the entire benthic invertebrate community with different organisms weighted differently on each axis.

Sample Information

Sampling Device	Kick Net
Mesh Size	400
Sampling Time	3
Taxonomist	Pina Viola, Consultant
	Marchant Box
Sub-Sample Proportion	5/100

Community Structure

Phylum	Class	Order	Family	Raw Count	Total Count
Annelida	Clitellata		Enchytraeidae	2	40.0
		Lumbriculida	Lumbriculidae	3	60.0
Arthropoda	Arachnida	Trombidiformes	Lebertiidae	6	120.0
			Sperchontidae	2	40.0
			Torrenticolidae	2	40.0
	Collembola	Collembola		1	20.0
	Insecta	Coleoptera	Elmidae	8	160.0
		Diptera	Ceratopogonidae	1	20.0
			Chironomidae	18	360.0
			Empididae	2	40.0
			Psychodidae	78	1,560.0
			Simuliidae	4	80.0
			Tipulidae	1	20.0
		Ephemeroptera	Ameletidae	1	20.0
			Baetidae	33	660.0
			Ephemerellidae	48	960.0

Date: December 6, 2023 12:50 PM

Community Structure

Phylum	Class	Order	Family	Raw Count	Total Count
-			Heptageniidae	50	1,000.0
		Plecoptera		3	60.0
			Capniidae	2	40.0
			Chloroperlidae	4	80.0
			Nemouridae	36	720.0
			Perlidae	2	40.0
			Perlodidae	4	80.0
			Taeniopterygidae	20	400.0
		Trichoptera	Apataniidae	5	100.0
			Brachycentridae	2	40.0
			Glossosomatidae	103	2,060.0
			Hydropsychidae	7	140.0
			Rhyacophilidae	24	480.0
			Total	472	9,440.0

Metrics

Name	ALX001	Predicted Group Reference Mean ±SD
Bray-Curtis Distance	0.53	0.4 ± 0.1
	Indices	
Hilsenhoff Family index (Mid-Atlantic)	3.9	3.4 ± 0.4
Hilsenhoff Family index (North-West)	3.9	3.1 ± 0.5
Intolerant taxa		1.0 ± 0.0
Long-lived taxa	2.0	1.7 ± 1.2
Tolerant individuals (%)		0.3 ± 0.0
Functiona	l Measures	
% Filterers		
% Gatherers	48.3	45.8 ± 14.9
% Predatores	15.5	14.8 ± 9.8
% Scrapers	48.7	59.4 ± 19.6
% Shredder	15.7	30.7 ± 17.4
No. Clinger Taxa	28.0	19.8 ± 4.0
	Individuals	
% Chironomidae	3.8	7.5 ± 8.6
% Coleoptera	1.7	0.1 ± 0.3
% Diptera + Non-insects	25.0	10.7 ± 9.9
% Ephemeroptera	28.2	47.2 ± 15.8
% Ephemeroptera that are Baetidae	25.0	25.4 ± 20.8
% EPT Individuals	72.9	89.2 ± 10.0
% Odonata		0.0 ± 0.0
% of 2 dominant taxa	38.7	58.3 ± 10.6
% of 5 dominant taxa	67.3	83.6 ± 6.3
% of dominant taxa	22.0	37.8 ± 11.1
% Plecoptera	14.5	36.3 ± 16.7
% Tribe Tanyatarisini		
% Trichoptera that are Hydropsychida	5.0	25.4 ± 24.6
% Tricoptera	30.1	5.7 ± 3.9
No. EPT individuals/Chironomids+EPT Individuals	0.9	0.9 ± 0.1
Total Abundance	9440.0	4661.0 ± 3119.0
	ness	
Chironomidae taxa (genus level only)	1.0	1.0 ± 0.1
Coleoptera taxa	1.0	0.1 ± 0.3
Diptera taxa	6.0	2.8 ± 1.0
Ephemeroptera taxa	4.0	3.7 ± 0.5
EPT Individuals (Sum)	6820.0	4035.4 ± 2618.4
EPT taxa (no)	15.0	12.3 ± 1.9
Odonata taxa		0.0 ± 0.0
Pielou's Evenness	0.8	0.7 ± 0.1
Plecoptera taxa	6.0	5.5 ± 1.1
Shannon-Wiener Diversity	2.5	1.9 ± 0.3
Simpson's Diversity	0.9	0.8 ± 0.1
Simpson's Evenness	0.3	0.3 ± 0.1

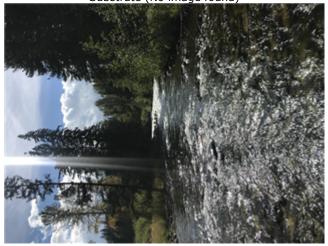
Date: December 6, 2023 12:50 PM

Metrics

Name	ALX001	Predicted Group Reference Mean ±SD	
Total No. of Taxa	27.0	17.0 ± 3.1	
Trichoptera taxa	5.0	3.1 ± 1.2	

Date: December 6, 2023 12:50 PM

Study Name	CBWQ-Elk	
Site	ALX003	
Sampling Date	Sep 15 2021	
Know Your Watershed Basin	Central Kootenay	
Province / Territory	British Columbia	
Terrestrial Ecological Classification	Montane Cordillera EcoZone	
	Northern Continental Divide EcoRegion	
Coordinates (decimal degrees)	49.65543 N, 114.73083 W	
Altitude	1311	
Local Basin Name	Alexander Creek	
	Elk River Watershed	
Stream Order	4	


Figure 1. Location Map

Across Reach Aerial (No image found)

Down Stream Substrate (No image found)

Up Stream

	Reference Model Summary	
Model	Columbia Basin 2020	
Analysis Date	December 06, 2023	
Taxonomic Level	Family	
Predictive Model Variables	Altitude	
	Drainage-Area	
	Longitude	
	Nati-Grassland	
	Natl-ShrubLow	
	Natl-Water	
	Precip10_Oct	
	Reach-%CanopyCoverage	
	Sedimentary	
	Slope	
	SlopeMax	
	Temp12_DECmin	

Reference Groups	1	2	3	4	5	6
Number of Reference Sites	13	24	28	35	32	15
Group Error Rate	53.8%	55.2%	34.1%	52.2%	23.1%	29.4%
Overall Model Error Rate			39.	4%		
Probability of Group Membership	1.1%	2.0%	4.0%	7.5%	84.5%	0.9%
CABIN Assessment of ALX003 on Sep 15,			Similar to	Reference		
2021						

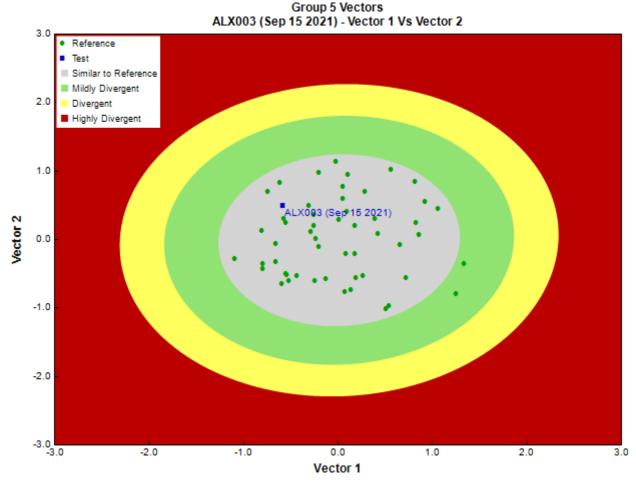


Figure 3. CABIN ordination assessment of the test site with the predicted group of reference sites. Each axis represents the relative abundance of the entire benthic invertebrate community with different organisms weighted differently on each axis.

Sample Information

Sampling Device	Kick Net
Mesh Size	400
Sampling Time	3
Taxonomist	Pina Viola, Consultant
	Marchant Box
Sub-Sample Proportion	6/100

Community Structure

Phylum	Class	Order	Family	Raw Count	Total Count
Arthropoda	Arachnida	Trombidiformes	Lebertiidae	3	50.0
			Sperchontidae	1	16.7
	Insecta	Coleoptera	Elmidae	8	133.3
		Diptera	Chironomidae	9	150.0
			Empididae	7	116.7
			Psychodidae	18	300.0
		Ephemeroptera	Baetidae	40	666.7
			Ephemerellidae	93	1,550.1
			Heptageniidae	86	1,433.3
		Plecoptera		2	33.3
			Capniidae	1	16.7
			Chloroperlidae	4	66.7
			Nemouridae	21	350.0
			Taeniopterygidae	26	433.3
		Trichoptera	Glossosomatidae	2	33.3
			Hydropsychidae	3	50.0

Date: December 6, 2023 12:50 PM

Community Structure

Phylum	Class	Order	Family	Raw Count	Total Count
			Rhyacophilidae	11	183.4
			Total	335	5,583.5

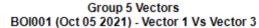
Metrics

Metrics		
Name	ALX003	Predicted Group Reference Mean ±SD
Bray-Curtis Distance	0.33	0.4 ± 0.1
	Indices	
Hilsenhoff Family index (Mid-Atlantic)	3.8	3.4 ± 0.4
Hilsenhoff Family index (North-West)	3.8	3.1 ± 0.5
Intolerant taxa		1.0 ± 0.0
Long-lived taxa	1.0	1.7 ± 1.2
Tolerant individuals (%)		0.3 ± 0.0
Functiona	Measures	
% Filterers		
% Gatherers	53.1	45.8 ± 14.9
% Predatores	10.1	14.8 ± 9.8
% Scrapers	49.3	59.4 ± 19.6
% Shredder	16.7	30.7 ± 17.4
No. Clinger Taxa	22.0	19.8 ± 4.0
	Individuals	
% Chironomidae	2.7	7.5 ± 8.6
% Coleoptera	2.4	0.1 ± 0.3
% Diptera + Non-insects	11.4	10.7 ± 9.9
% Ephemeroptera	65.8	47.2 ± 15.8
% Ephemeroptera that are Baetidae	18.3	25.4 ± 20.8
% EPT Individuals	86.2	89.2 ± 10.0
% Odonata		0.0 ± 0.0
% of 2 dominant taxa	53.8	58.3 ± 10.6
% of 5 dominant taxa	79.9	83.6 ± 6.3
% of dominant taxa	27.9	37.8 ± 11.1
% Plecoptera	15.6	36.3 ± 16.7
% Tribe Tanyatarisini		
% Trichoptera that are Hydropsychida	18.7	25.4 ± 24.6
% Tricoptera	4.8	5.7 ± 3.9
No. EPT individuals/Chironomids+EPT Individuals	1.0	0.9 ± 0.1
Total Abundance	5583.3	4661.0 ± 3119.0
	ness	
Chironomidae taxa (genus level only)	1.0	1.0 ± 0.1
Coleoptera taxa	1.0	0.1 ± 0.3
Diptera taxa	3.0	2.8 ± 1.0
Ephemeroptera taxa	3.0	3.7 ± 0.5
EPT Individuals (Sum)	4783.3	4035.4 ± 2618.4
EPT taxa (no)	10.0	12.3 ± 1.9
Odonata taxa	0.7	0.0 ± 0.0
Pielou's Evenness	4.0	0.7 ± 0.1 5.5 ± 1.1
Plecoptera taxa Shannon-Wiener Diversity	2.1	
	0.8	1.9 ± 0.3
Simpson's Diversity		0.8 ± 0.1
Simpson's Evenness Total No. of Taxa	0.4	0.3 ± 0.1
	16.0	17.0 ± 3.1
Trichoptera taxa	3.0	3.1 ± 1.2

Olto Bocoliption		
Study Name	CBWQ-EIk	
Site	BOI001	
Sampling Date	Oct 05 2021	
Know Your Watershed Basin	Central Kootenay	
Province / Territory	British Columbia	
Terrestrial Ecological Classification	Montane Cordillera EcoZone	
	Northern Continental Divide EcoRegion	
Coordinates (decimal degrees)	50.02312 N, 114.91641 W	
Altitude	1260	
Local Basin Name	Elk River	
	Boivin Creek	
Stream Order	4	

Figure 1. Location Map

Across Reach Aerial (No image found)



Up Stream

Reference Model Summary		
Model	Columbia Basin 2020	
Analysis Date	December 06, 2023	
Taxonomic Level	Family	

- Gubiii 7 (GGGGGIII GIII 1 (GGGIIG	
Predictive Model Variables	Altitude
	Drainage-Area
	Longitude
	Natl-Grassland
	Natl-ShrubLow
	Natl-Water
	Precip10_Oct
	Reach-%CanopyCoverage
	Sedimentary
	Slope
	SlopeMax
	Temp12_DECmin

Reference Groups	1	2	3	4	5	6
Number of Reference Sites	13	24	28	35	32	15
Group Error Rate	53.8%	55.2%	34.1%	52.2%	23.1%	29.4%
Overall Model Error Rate	39.4%					
Probability of Group Membership	6.0%	9.3%	4.7%	18.2%	57.8%	4.0%
CABIN Assessment of BOI001 on Oct 05,	Mildly Divergent					
2021						

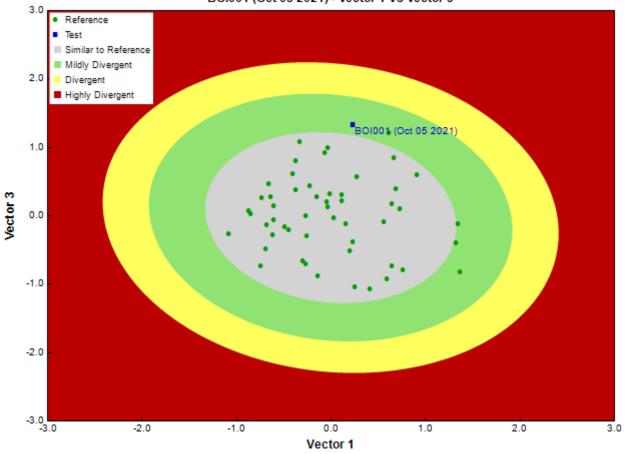


Figure 3. CABIN ordination assessment of the test site with the predicted group of reference sites. Each axis represents the relative abundance of the entire benthic invertebrate community with different organisms weighted differently on each axis.

Sample Information

Sampling Device	Kick Net
Mesh Size	400
Sampling Time	3

Sample Information

Taxonomist	Pina Viola, Consultant	
	Marchant Box	
Sub-Sample Proportion	5/100	

Community Structure

Phylum	Class	Order	Family	Raw Count	Total Count
Arthropoda	Arachnida	Trombidiformes		1	20.0
			Sperchontidae	1	20.0
	Insecta	Diptera	Chironomidae	9	180.0
			Psychodidae	2	40.0
			Simuliidae	9	180.0
		Ephemeroptera	Baetidae	21	420.0
			Ephemerellidae	17	340.0
			Heptageniidae	148	2,960.0
		Plecoptera		1	20.0
			Capniidae	1	20.0
			Nemouridae	43	860.0
			Perlodidae	4	80.0
			Taeniopterygidae	323	6,460.0
		Trichoptera	Glossosomatidae	7	140.0
			Uenoidae	1	20.0
			Total	588	11,760.0

Metrics

Name	BOI001	Predicted Group Reference Mean ±SD					
Bray-Curtis Distance	0.59	0.4 ± 0.1					
	Biotic Indices						
Hilsenhoff Family index (Mid-Atlantic)	2.7	3.4 ± 0.4					
Hilsenhoff Family index (North-West)	2.7	3.1 ± 0.5					
Intolerant taxa		1.0 ± 0.0					
Long-lived taxa		1.7 ± 1.2					
Tolerant individuals (%)		0.3 ± 0.0					
Functional	Measures						
% Filterers							
% Gatherers	68.7	45.8 ± 14.9					
% Predatores	3.9	14.8 ± 9.8					
% Scrapers	86.6	59.4 ± 19.6					
% Shredder	62.4	30.7 ± 17.4					
No. Clinger Taxa	18.0	19.8 ± 4.0					
Number Of Individuals							
% Chironomidae	1.5	7.5 ± 8.6					
% Coleoptera	0.0	0.1 ± 0.3					
% Diptera + Non-insects	3.6	10.7 ± 9.9					
% Ephemeroptera	31.7	47.2 ± 15.8					
% Ephemeroptera that are Baetidae	11.3	25.4 ± 20.8					
% EPT Individuals	96.4	89.2 ± 10.0					
% Odonata		0.0 ± 0.0					
% of 2 dominant taxa	80.4	58.3 ± 10.6					
% of 5 dominant taxa	94.2	83.6 ± 6.3					
% of dominant taxa	55.1	37.8 ± 11.1					
% Plecoptera	63.3	36.3 ± 16.7					
% Tribe Tanyatarisini							
% Trichoptera that are Hydropsychida	0.0	25.4 ± 24.6					
% Tricoptera	1.4	5.7 ± 3.9					
No. EPT individuals/Chironomids+EPT Individuals	1.0	0.9 ± 0.1					
Total Abundance	11760.0	4661.0 ± 3119.0					
Rich							
Chironomidae taxa (genus level only)	1.0	1.0 ± 0.1					
Coleoptera taxa	0.0	0.1 ± 0.3					
Diptera taxa	3.0	2.8 ± 1.0					
Ephemeroptera taxa	3.0	3.7 ± 0.5					

Date: December 6, 2023 12:50 PM

Metrics

Name	BOI001	Predicted Group Reference Mean ±SD		
EPT Individuals (Sum)	11300.0	4035.4 ± 2618.4		
EPT taxa (no)	9.0	12.3 ± 1.9		
Odonata taxa		0.0 ± 0.0		
Pielou's Evenness	0.5	0.7 ± 0.1		
Plecoptera taxa	4.0	5.5 ± 1.1		
Shannon-Wiener Diversity	1.4	1.9 ± 0.3		
Simpson's Diversity	0.6	0.8 ± 0.1		
Simpson's Evenness	0.2	0.3 ± 0.1		
Total No. of Taxa	13.0	17.0 ± 3.1		
Trichoptera taxa	2.0	3.1 ± 1.2		

Study Name	CBWQ-Elk	
Site	BOI002	
Sampling Date	Oct 05 2021	
Know Your Watershed Basin	Central Kootenay	
Province / Territory	British Columbia	
Terrestrial Ecological Classification	Montane Cordillera EcoZone	
	Northern Continental Divide EcoRegion	
Coordinates (decimal degrees)	50.01615 N, 114.93726 W	
Altitude	1327	
Local Basin Name	Elk River	
	Boivin Creek	
Stream Order	4	

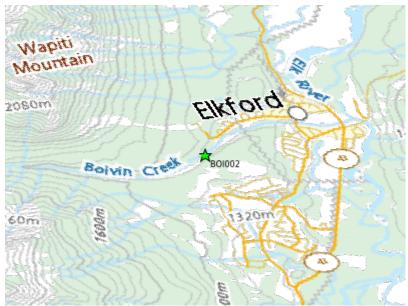


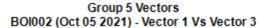
Figure 1. Location Map

Across Reach Aerial (No image found)

Down Stream

Flavor STAPLES

TO STAPLES



Up Stream

Reference Model Summary		
Model Columbia Basin 2020		
Analysis Date	December 06, 2023	
Taxonomic Level	Family	

- Gubiii 7 (GGGGGIII GIII 1 (GGGIIG	
Predictive Model Variables	Altitude
	Drainage-Area
	Longitude
	Natl-Grassland
	Natl-ShrubLow
	Natl-Water
	Precip10_Oct
	Reach-%CanopyCoverage
	Sedimentary
	Slope
	SlopeMax
	Temp12_DECmin

Reference Groups	1	2	3	4	5	6
Number of Reference Sites	13	24	28	35	32	15
Group Error Rate	53.8%	55.2%	34.1%	52.2%	23.1%	29.4%
Overall Model Error Rate	39.4%					
Probability of Group Membership	3.1%	4.4%	7.8%	14.4%	68.0%	2.3%
CABIN Assessment of BOI002 on Oct 05,	Similar to Reference					
2021						

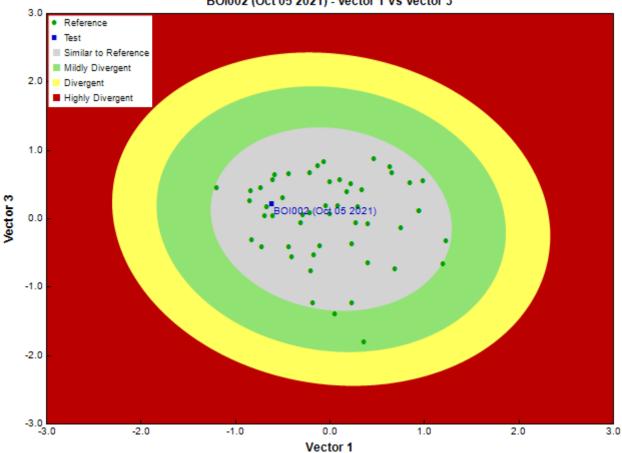


Figure 3. CABIN ordination assessment of the test site with the predicted group of reference sites. Each axis represents the relative abundance of the entire benthic invertebrate community with different organisms weighted differently on each axis.

Sample Information

Sampling Device	Kick Net
Mesh Size	400
Sampling Time	3

Sample Information

Taxonomist	Pina Viola, Consultant
	Marchant Box
Sub-Sample Proportion	7/100

Community Structure

Phylum	Class	Order	Family	Raw Count	Total Count
Arthropoda	Insecta	Diptera	Chironomidae	19	271.4
			Psychodidae	1	14.3
			Simuliidae	14	200.0
		Ephemeroptera	Baetidae	17	242.9
			Ephemerellidae	61	871.5
			Heptageniidae	79	1,128.6
		Plecoptera	Chloroperlidae	11	157.2
			Nemouridae	12	171.4
			Perlodidae	8	114.3
			Taeniopterygidae	86	1,228.6
		Trichoptera	Glossosomatidae	2	28.6
			Rhyacophilidae	9	128.6
			Total	319	4,557.4

Metrics

Name	BOI002	Predicted Group Reference Mean ±SD
Bray-Curtis Distance	0.25	0.4 ± 0.1
Biotic	Indices	
Hilsenhoff Family index (Mid-Atlantic)	3.2	3.4 ± 0.4
Hilsenhoff Family index (North-West)	3.2	3.1 ± 0.5
Intolerant taxa		1.0 ± 0.0
Long-lived taxa		1.7 ± 1.2
Tolerant individuals (%)		0.3 ± 0.0
	l Measures	
% Filterers		
% Gatherers	60.5	45.8 ± 14.9
% Predatores	15.7	14.8 ± 9.8
% Scrapers	62.1	59.4 ± 19.6
% Shredder	30.7	30.7 ± 17.4
No. Clinger Taxa	15.0	19.8 ± 4.0
Number Of	Individuals	
% Chironomidae	6.0	7.5 ± 8.6
% Coleoptera	0.0	0.1 ± 0.3
% Diptera + Non-insects	10.7	10.7 ± 9.9
% Ephemeroptera	49.2	47.2 ± 15.8
% Ephemeroptera that are Baetidae	10.8	25.4 ± 20.8
% EPT Individuals	89.3	89.2 ± 10.0
% Odonata		0.0 ± 0.0
% of 2 dominant taxa	51.7	58.3 ± 10.6
% of 5 dominant taxa	82.1	83.6 ± 6.3
% of dominant taxa	27.0	37.8 ± 11.1
% Plecoptera	36.7	36.3 ± 16.7
% Tribe Tanyatarisini		
% Trichoptera that are Hydropsychida	0.0	25.4 ± 24.6
% Tricoptera	3.4	5.7 ± 3.9
No. EPT individuals/Chironomids+EPT Individuals	0.9	0.9 ± 0.1
Total Abundance	4557.1	4661.0 ± 3119.0
	ness	
Chironomidae taxa (genus level only)	1.0	1.0 ± 0.1
Coleoptera taxa	0.0	0.1 ± 0.3
Diptera taxa	3.0	2.8 ± 1.0
Ephemeroptera taxa	3.0	3.7 ± 0.5
EPT Individuals (Sum)	4071.4	4035.4 ± 2618.4
EPT taxa (no)	9.0	12.3 ± 1.9
Odonata taxa		0.0 ± 0.0

Date: December 6, 2023 12:50 PM

Metrics

Name	BOI002	Predicted Group Reference Mean ±SD	
Pielou's Evenness	0.8	0.7 ± 0.1	
Plecoptera taxa	4.0	5.5 ± 1.1	
Shannon-Wiener Diversity	2.0	1.9 ± 0.3	
Simpson's Diversity	0.8	0.8 ± 0.1	
Simpson's Evenness	0.5	0.3 ± 0.1	
Total No. of Taxa	12.0	17.0 ± 3.1	
Trichoptera taxa	2.0	3.1 ± 1.2	

Study Name	CBWQ-Elk	
Site	COL001	
Sampling Date	Oct 06 2021	
Know Your Watershed Basin	Central Kootenay	
Province / Territory	British Columbia	
Terrestrial Ecological Classification	Montane Cordillera EcoZone	
	Northern Continental Divide EcoRegion	
Coordinates (decimal degrees)	49.49548 N, 115.06645 W	
Altitude	999	
Local Basin Name	Elk River	
	Coal Creek	
Stream Order	3	

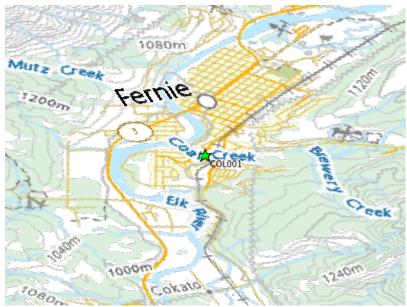


Figure 1. Location Map

Across Reach (No image found)
Aerial (No image found)
Down Stream (No image found)
Substrate (No image found)
Up Stream (No image found)

Cabin Assessment Results

R	Reference Model Summary			
Model	Columbia Basin 2020			
Analysis Date	December 06, 2023			
Taxonomic Level	Family			
Predictive Model Variables	Altitude			
	Drainage-Area			
	Longitude			
	Natl-Grassland			
	Natl-ShrubLow			
	Natl-Water			
	Precip10_Oct			
	Reach-%CanopyCoverage			
	Sedimentary			
	Slope			
	SlopeMax			
	Temp12_DECmin			

Reference Groups	1	2	3	4	5	6
Number of Reference Sites	13	24	28	35	32	15
Group Error Rate	53.8%	55.2%	34.1%	52.2%	23.1%	29.4%

Overall Model Error Rate	39.4%					
Probability of Group Membership	2.9% 14.0% 11.8% 46.7% 22.3% 2.2%					
CABIN Assessment of COL001 on Oct 06,	Highly Divergent					
2021						

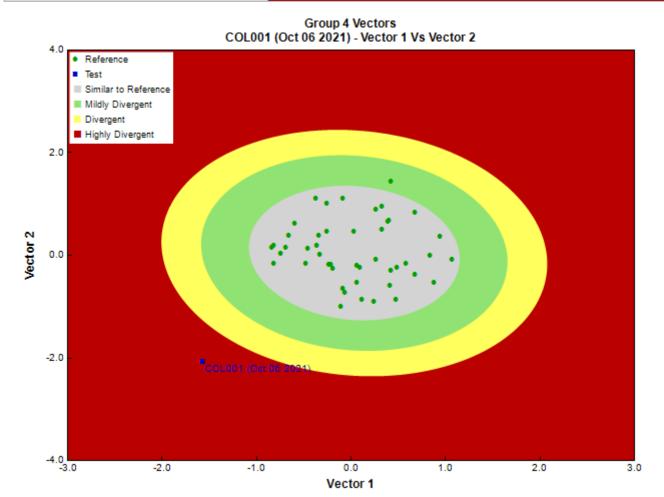


Figure 3. CABIN ordination assessment of the test site with the predicted group of reference sites. Each axis represents the relative abundance of the entire benthic invertebrate community with different organisms weighted differently on each axis.

Sample Information

Sampling Device	Kick Net
Mesh Size	400
Sampling Time	3
Taxonomist	Pina Viola, Consultant
	Marchant Box
Sub-Sample Proportion	5/100

Community Structure

Phylum	Class	Order	Family	Raw Count	Total Count
Annelida	Clitellata			1	20.0
		Tubificida	Naididae	52	1,040.0
Arthropoda	Arachnida	Trombidiformes		1	20.0
			Lebertiidae	4	80.0
			Sperchontidae	2	40.0
			Torrenticolidae	4	80.0
	Insecta	Coleoptera	Elmidae	3	60.0
		Diptera	Chironomidae	79	1,580.0
			Empididae	4	80.0
			Psychodidae	3	60.0
			Tipulidae	51	1,020.0

Date: December 6, 2023 12:50 PM

Community Structure

Phylum	Class	Order	Family	Raw Count	Total Count
		Ephemeroptera	Ameletidae	2	40.0
			Baetidae	16	320.0
			Ephemerellidae	142	2,840.0
			Heptageniidae	49	980.0
			Leptophlebiidae	5	100.0
		Plecoptera		1	20.0
			Capniidae	18	360.0
			Perlodidae	5	100.0
		Trichoptera	Apataniidae	2	40.0
			Brachycentridae	1	20.0
			Hydropsychidae	9	180.0
			Lepidostomatidae	137	2,740.0
Cnidaria	Hydrozoa	Anthoathecatae	Hydridae	1	20.0
			Total	592	11,840.0

Metrics

Name	COL001	Predicted Group Reference Mean ±SD					
Bray-Curtis Distance	0.9	0.3 ± 0.1					
Biotic Indices							
Hilsenhoff Family index (Mid-Atlantic)	4.4	3.2 ± 0.4					
Hilsenhoff Family index (North-West)	4.4	2.9 ± 0.3					
Intolerant taxa		1.0 ± 0.0					
Long-lived taxa	2.0	1.9 ± 1.0					
Tolerant individuals (%)		0.5 ± 0.4					
Functiona	Il Measures						
% Filterers		0.3					
% Gatherers	67.5	47.1 ± 15.4					
% Predatores	18.4	12.9 ± 7.3					
% Scrapers	13.4	68.3 ± 16.1					
% Shredder	35.9	36.7 ± 14.6					
No. Clinger Taxa	17.0	20.3 ± 4.6					
	f Individuals						
% Chironomidae	13.4	5.2 ± 5.7					
% Coleoptera	0.5	0.6 ± 2.2					
% Diptera + Non-insects	33.8	7.4 ± 7.0					
% Ephemeroptera	36.4	45.8 ± 15.1					
% Ephemeroptera that are Baetidae	7.5	28.9 ± 20.8					
% EPT Individuals	65.6	91.9 ± 7.3					
% Odonata		0.0 ± 0.0					
% of 2 dominant taxa	47.4	59.5 ± 11.3					
% of 5 dominant taxa	78.4	85.1 ± 6.5					
% of dominant taxa	24.1	37.7 ± 10.4					
% Plecoptera	3.9	40.5 ± 13.3					
% Tribe Tanyatarisini							
% Trichoptera that are Hydropsychida	6.0	23.9 ± 23.6					
% Tricoptera	25.3	5.6 ± 3.9					
No. EPT individuals/Chironomids+EPT Individuals	0.8	0.9 ± 0.1					
Total Abundance	11820.0	1449.6 ± 859.7					
	nness						
Chironomidae taxa (genus level only)	1.0	1.0 ± 0.2					
Coleoptera taxa	1.0	0.2 ± 0.5					
Diptera taxa	4.0	2.6 ± 1.1					
Ephemeroptera taxa	5.0	3.7 ± 0.6					
EPT Individuals (Sum)	7720.0	1353.0 ± 804.6					
EPT taxa (no)	11.0	12.3 ± 2.2					
Odonata taxa		0.0 ± 0.0					
Pielou's Evenness	0.7	0.7 ± 0.1					
Plecoptera taxa	2.0	5.4 ± 1.2					
Shannon-Wiener Diversity	2.2	1.9 ± 0.3					
Simpson's Diversity	0.8	0.8 ± 0.1					
Simpson's Evenness	0.3	0.3 ± 0.1					

Date: December 6, 2023 12:50 PM

Metrics

Name	COL001	Predicted Group Reference Mean ±SD
Total No. of Taxa	21.0	16.5 ± 3.6
Trichoptera taxa	4.0	3.2 ± 1.3

Study Name	CBWQ-Elk
Site	COL003
Sampling Date	Oct 06 2021
Know Your Watershed Basin	Central Kootenay
Province / Territory	British Columbia
Terrestrial Ecological Classification	Montane Cordillera EcoZone
	Northern Continental Divide EcoRegion
Coordinates (decimal degrees)	49.45274 N, 114.88019 W
Altitude	1737
Local Basin Name	Elk River
	Coal Creek
Stream Order	1

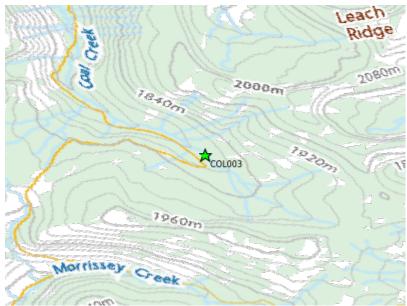
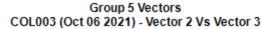


Figure 1. Location Map

Across Reach Aerial (No image found)

Down Stream

The last of the l



Up Stream

Reference Model Summary		
Model	Columbia Basin 2020	
Analysis Date	December 06, 2023	
Taxonomic Level	Family	

- Gubiii 7 (GGGGGIII GIII 1 (GGGIIG	
Predictive Model Variables	Altitude
	Drainage-Area
	Longitude
	Natl-Grassland
	Natl-ShrubLow
	Natl-Water
	Precip10_Oct
	Reach-%CanopyCoverage
	Sedimentary
	Slope
	SlopeMax
	Temp12_DECmin

Reference Groups	1	2	3	4	5	6
Number of Reference Sites	13	24	28	35	32	15
Group Error Rate	53.8%	55.2%	34.1%	52.2%	23.1%	29.4%
Overall Model Error Rate	39.4%					
Probability of Group Membership	1.0%	0.1%	0.9%	0.8%	97.2%	0.0%
CABIN Assessment of COL003 on Oct 06,	Mildly Divergent					
2021			, in the second	_		

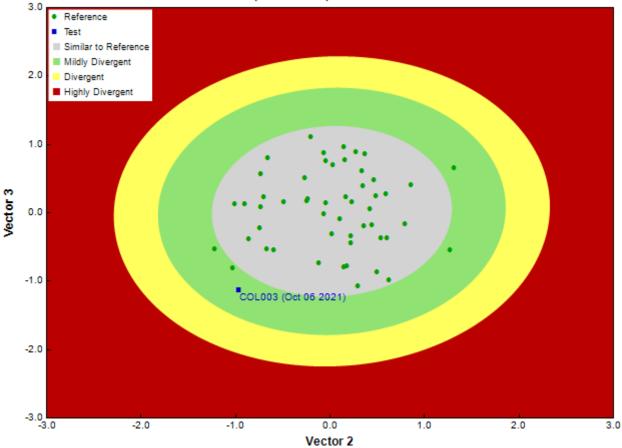


Figure 3. CABIN ordination assessment of the test site with the predicted group of reference sites. Each axis represents the relative abundance of the entire benthic invertebrate community with different organisms weighted differently on each axis.

Sample Information

Sampling Device	Kick Net
Mesh Size	400
Sampling Time	3

Sample Information

Taxonomist	Pina Viola, Consultant
	Marchant Box
Sub-Sample Proportion	11/100

Community Structure

Phylum	Class	Order	Family	Raw Count	Total Count
Annelida	Clitellata	Tubificida	Naididae	1	9.1
Arthropoda	Arachnida	Trombidiformes	Lebertiidae	3	27.3
·			Sperchontidae	2	18.2
	Collembola	Collembola		1	9.1
	Insecta	Coleoptera	Elmidae	8	72.7
		Diptera	Chironomidae	166	1,509.1
			Empididae	1	9.1
			Psychodidae	1	9.1
		Ephemeroptera	Ameletidae	43	390.9
			Baetidae	52	472.7
			Ephemerellidae	13	118.2
			Heptageniidae	20	181.9
			Leptophlebiidae	1	9.1
		Plecoptera	Capniidae	6	54.5
			Chloroperlidae	8	72.8
			Leuctridae	1	9.1
			Nemouridae	17	154.6
			Peltoperlidae	4	36.4
			Perlidae	4	36.4
			Perlodidae	3	27.3
		Trichoptera		3	27.3
			Brachycentridae	15	136.4
			Rhyacophilidae	3	27.3
			Uenoidae	1	9.1
			Total	377	3,427.7

Metrics

Name	COL003	Predicted Group Reference Mean ±SD	
Bray-Curtis Distance	0.62	0.4 ± 0.1	
Biot	ic Indices		
Hilsenhoff Family index (Mid-Atlantic)	3.4	3.4 ± 0.4	
Hilsenhoff Family index (North-West)	3.4	3.1 ± 0.5	
Intolerant taxa		1.0 ± 0.0	
Long-lived taxa	3.0	1.7 ± 1.2	
Tolerant individuals (%)		0.3 ± 0.0	
Function	nal Measures		
% Filterers			
% Gatherers	70.8	45.8 ± 14.9	
% Predatores	52.3	14.8 ± 9.8	
% Scrapers	21.5	59.4 ± 19.6	
% Shredder	13.5	30.7 ± 17.4	
No. Clinger Taxa	24.0	19.8 ± 4.0	
Number Of Individuals			
% Chironomidae	44.5	7.5 ± 8.6	
% Coleoptera	2.1	0.1 ± 0.3	
% Diptera + Non-insects	46.6	10.7 ± 9.9	
% Ephemeroptera	34.6	47.2 ± 15.8	
% Ephemeroptera that are Baetidae	40.3	25.4 ± 20.8	
% EPT Individuals	51.2	89.2 ± 10.0	
% Odonata		0.0 ± 0.0	
% of 2 dominant taxa	58.4	58.3 ± 10.6	
% of 5 dominant taxa	79.9	83.6 ± 6.3	
% of dominant taxa	44.5	37.8 ± 11.1	
% Plecoptera	11.5	36.3 ± 16.7	
% Tribe Tanyatarisini			

Date: December 6, 2023 12:51 PM

Metrics

Micti 103			
Name	COL003	Predicted Group Reference Mean ±SD	
% Trichoptera that are Hydropsychida	0.0	25.4 ± 24.6	
% Tricoptera	5.1	5.7 ± 3.9	
No. EPT individuals/Chironomids+EPT Individuals	0.5	0.9 ± 0.1	
Total Abundance	3427.3	4661.0 ± 3119.0	
Rich	ness		
Chironomidae taxa (genus level only)	1.0	1.0 ± 0.1	
Coleoptera taxa	1.0	0.1 ± 0.3	
Diptera taxa	3.0	2.8 ± 1.0	
Ephemeroptera taxa	5.0	3.7 ± 0.5	
EPT Individuals (Sum)	1736.4	4035.4 ± 2618.4	
EPT taxa (no)	15.0	12.3 ± 1.9	
Odonata taxa		0.0 ± 0.0	
Pielou's Evenness	0.6	0.7 ± 0.1	
Plecoptera taxa	7.0	5.5 ± 1.1	
Shannon-Wiener Diversity	2.0	1.9 ± 0.3	
Simpson's Diversity	0.8	0.8 ± 0.1	
Simpson's Evenness	0.2	0.3 ± 0.1	
Total No. of Taxa	22.0	17.0 ± 3.1	
Trichoptera taxa	3.0	3.1 ± 1.2	

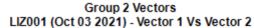
one a coompact		
Study Name	CBWQ-Elk	
Site	LIZ001	
Sampling Date	Oct 03 2021	
Know Your Watershed Basin	Central Kootenay	
Province / Territory	British Columbia	
Terrestrial Ecological Classification	Montane Cordillera EcoZone	
	Northern Continental Divide EcoRegion	
Coordinates (decimal degrees)	49.47094 N, 115.07678 W	
Altitude	988	
Local Basin Name	Lizard Creek	
	Elk River	
Stream Order	3	



Figure 1. Location Map

Across Reach Aerial (No image found)

Substrate



Up Stream

Reference Model Summary			
Model	Columbia Basin 2020		
Analysis Date	December 06, 2023		
Taxonomic Level	Family		

Cubin 7 tococomont 1 toculto	
Predictive Model Variables	Altitude
	Drainage-Area
	Longitude
	Natl-Grassland
	Natl-ShrubLow
	Natl-Water
	Precip10_Oct
	Reach-%CanopyCoverage
	Sedimentary
	Slope
	SlopeMax
	Temp12 DECmin

Reference Groups	1	2	3	4	5	6
Number of Reference Sites	13	24	28	35	32	15
Group Error Rate	53.8%	55.2%	34.1%	52.2%	23.1%	29.4%
Overall Model Error Rate	39.4%					
Probability of Group Membership	8.1%	44.9%	8.4%	25.1%	6.7%	6.8%
CABIN Assessment of LIZ001 on Oct 03,	Highly Divergent					
2021						

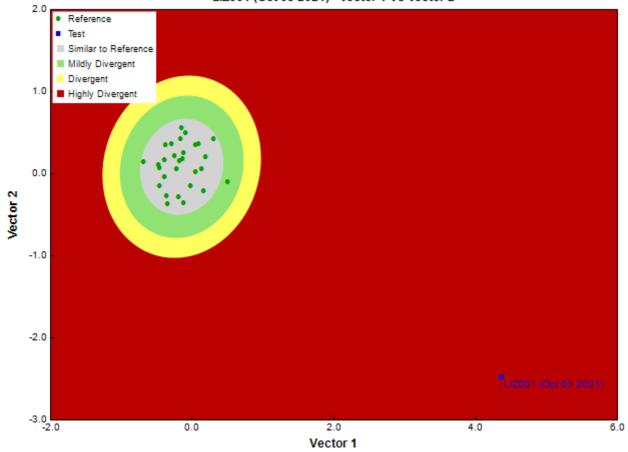


Figure 3. CABIN ordination assessment of the test site with the predicted group of reference sites. Each axis represents the relative abundance of the entire benthic invertebrate community with different organisms weighted differently on each axis.

Sample Information

Sampling Device	Kick Net
Mesh Size	400
Sampling Time	3

Sample Information

Taxonomist	Pina Viola, Consultant	
	Marchant Box	
Sub-Sample Proportion	5/100	

Community Structure

Community Str		01	F iI	D Ct	Tatal Carret
Phylum	Class	Order	Family	Raw Count	Total Count
Annelida	Clitellata			12	240.0
		Tubificida	Naididae	114	2,280.0
Arthropoda	Arachnida	Trombidiformes		1	20.0
			Aturidae	1	20.0
			Lebertiidae	33	660.0
			Sperchontidae	2	40.0
			Torrenticolidae	7	140.0
	Insecta	Coleoptera	Elmidae	23	460.0
		Diptera	Ceratopogonidae	1	20.0
			Chironomidae	142	2,840.0
			Empididae	17	340.0
			Psychodidae	69	1,380.0
			Simuliidae	10	200.0
			Tipulidae	12	240.0
		Ephemeroptera	Baetidae	54	1,080.0
			Ephemerellidae	16	320.0
			Heptageniidae	4	80.0
		Plecoptera		1	20.0
			Capniidae	21	420.0
			Chloroperlidae	9	180.0
			Nemouridae	64	1,280.0
			Perlidae	8	160.0
		Trichoptera	Apataniidae	3	60.0
			Brachycentridae	17	340.0
			Glossosomatidae	11	220.0
			Hydropsychidae	33	660.0
			Hydroptilidae	2	40.0
			Lepidostomatidae	11	220.0
			Rhyacophilidae	4	80.0
			Uenoidae	1	20.0
			Total	703	14,060.0

Metrics

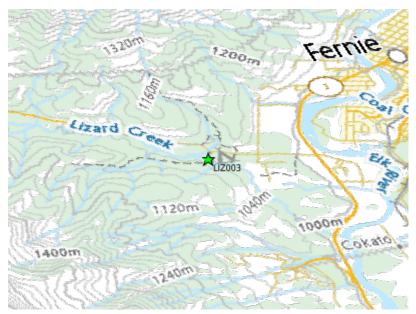
Name	LIZ001	Predicted Group Reference Mean ±SD		
Bray-Curtis Distance	0.96	0.3 ± 0.1		
Biotic	Indices			
Hilsenhoff Family index (Mid-Atlantic)	6.7	3.6 ± 0.4		
Hilsenhoff Family index (North-West)	6.7	3.2 ± 0.3		
Intolerant taxa		1.0 ± 0.0		
Long-lived taxa	4.0	2.7 ± 1.5		
Tolerant individuals (%)		0.9 ± 0.2		
Functiona	l Measures			
% Filterers		0.6 ± 0.3		
% Gatherers	87.8	38.1 ± 14.1		
% Predatores	39.0	15.8 ± 9.1		
% Scrapers	20.1	60.8 ± 14.6		
% Shredder	21.5	23.9 ± 11.1		
No. Clinger Taxa	28.0	22.0 ± 5.6		
Number Of Individuals				
% Chironomidae	20.6	6.0 ± 5.6		
% Coleoptera	3.3	1.7 ± 4.1		
% Diptera + Non-insects	59.2	10.1 ± 7.7		
% Ephemeroptera	10.7	53.4 ± 13.8		
% Ephemeroptera that are Baetidae	73.0	29.5 ± 17.8		
% EPT Individuals	37.4	88.1 ± 9.3		

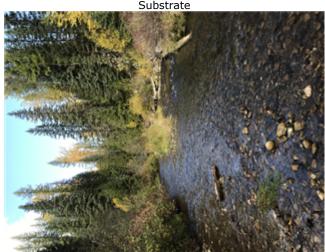
Date: December 6, 2023 12:51 PM

Metrics

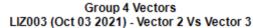
Name	LIZ001	Predicted Group Reference Mean ±SD			
% Odonata		0.0 ± 0.0			
% of 2 dominant taxa	37.2	54.4 ± 11.4			
% of 5 dominant taxa	64.3	81.6 ± 8.1			
% of dominant taxa	20.6	35.2 ± 11.4			
% Plecoptera	14.8	28.8 ± 11.6			
% Tribe Tanyatarisini					
% Trichoptera that are Hydropsychida	40.2	28.7 ± 28.3			
% Tricoptera	11.9	6.0 ± 5.0			
No. EPT individuals/Chironomids+EPT Individuals	0.6	0.9 ± 0.1			
Total Abundance	14060.0	1083.1 ± 932.3			
Richness					
Chironomidae taxa (genus level only)	1.0	1.0 ± 0.1			
Coleoptera taxa	1.0	0.3 ± 0.5			
Diptera taxa	6.0	3.1 ± 1.3			
Ephemeroptera taxa	3.0	3.8 ± 0.6			
EPT Individuals (Sum)	5160.0	941.8 ± 766.3			
EPT taxa (no)	15.0	12.4 ± 2.4			
Odonata taxa		0.0 ± 0.0			
Pielou's Evenness	0.8	0.7 ± 0.1			
Plecoptera taxa	4.0	5.3 ± 1.3			
Shannon-Wiener Diversity	2.6	2.0 ± 0.3			
Simpson's Diversity	0.9	0.8 ± 0.1			
Simpson's Evenness	0.4	0.3 ± 0.1			
Total No. of Taxa	27.0	18.2 ± 4.7			
Trichoptera taxa	8.0	3.3 ± 1.5			

One Beschiption		
Study Name	CBWQ-Elk	
Site	LIZ003	
Sampling Date	Oct 03 2021	
Know Your Watershed Basin	Central Kootenay	
Province / Territory	British Columbia	
Terrestrial Ecological Classification	Montane Cordillera EcoZone	
	Northern Continental Divide EcoRegion	
Coordinates (decimal degrees)	49.48568 N, 115.09448 W	
Altitude	1022	
Local Basin Name	Lizard Creek	
	Central Kootenay	
Stream Order	3	




Figure 1. Location Map

Across Reach Aerial (No image found)



Up Stream

Reference Model Summary		
Model	Columbia Basin 2020	
Analysis Date	December 06, 2023	
Taxonomic Level	Family	

Oubili Assessment Nesatts	
Predictive Model Variables	Altitude
	Drainage-Area
	Longitude
	Natl-Grassland
	Natl-ShrubLow
	Natl-Water
	Precip10_Oct
	Reach-%CanopyCoverage
	Sedimentary
	Slope
	SlopeMax
	Temp12_DECmin

Reference Groups	1	2	3	4	5	6
Number of Reference Sites	13	24	28	35	32	15
Group Error Rate	53.8%	55.2%	34.1%	52.2%	23.1%	29.4%
Overall Model Error Rate	39.4%					
Probability of Group Membership	4.0%	28.0%	17.9%	33.0%	11.3%	5.7%
CABIN Assessment of LIZ003 on Oct 03,			Highly D	ivergent		
2021						

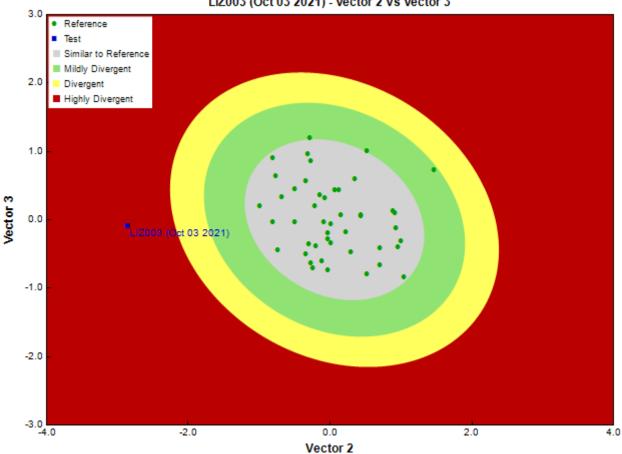


Figure 3. CABIN ordination assessment of the test site with the predicted group of reference sites. Each axis represents the relative abundance of the entire benthic invertebrate community with different organisms weighted differently on each axis.

Sample Information

Sampling Device	Kick Net
Mesh Size	400
Sampling Time	3

Sample Information

Taxonomist	Pina Viola, Consultant	
	Marchant Box	
Sub-Sample Proportion	5/100	

Community Structure

Phylum	Class	Order	Family	Raw Count	Total Count
Annelida	Clitellata	Tubificida	Naididae	9	180.0
Arthropoda Arachnida Insecta	Trombidiformes	Hygrobatidae	1	20.0	
		Lebertiidae	10	200.0	
		Torrenticolidae	17	340.0	
	Coleoptera	Dytiscidae	1	20.0	
		Elmidae	225	4,500.0	
		Diptera	Chironomidae	33	660.0
		Empididae	1	20.0	
		Pelecorhynchidae	1	20.0	
			Psychodidae	203	4,060.0
		Tipulidae	17	340.0	
	Ephemeroptera	Baetidae	222	4,440.0	
		Ephemerellidae	116	2,320.0	
			Heptageniidae	27	540.0
		Plecoptera		9	180.0
			Capniidae	26	520.0
			Chloroperlidae	30	600.0
		Nemouridae	107	2,140.0	
		Perlidae	10	200.0	
		Perlodidae	6	120.0	
			Taeniopterygidae	8	160.0
		Trichoptera	Apataniidae	32	640.0
			Brachycentridae	47	940.0
			Hydropsychidae	29	580.0
		Hydroptilidae	1	20.0	
			Lepidostomatidae	1	20.0
			Rhyacophilidae	35	700.0
			Uenoidae	83	1,660.0
<u> </u>			Total	1,307	26,140.0

Metrics

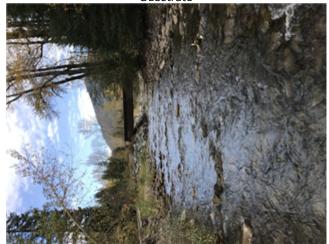
Name	LIZ003	Predicted Group Reference Mean ±SD			
Bray-Curtis Distance	0.93	0.3 ± 0.1			
Biotic Indices					
Hilsenhoff Family index (Mid-Atlantic)	3.8	3.2 ± 0.4			
Hilsenhoff Family index (North-West)	3.8	2.9 ± 0.3			
Intolerant taxa		1.0 ± 0.0			
Long-lived taxa	5.0	1.9 ± 1.0			
Tolerant individuals (%)	0.1	0.5 ± 0.4			
Functional Measures					
% Filterers		0.3			
% Gatherers	67.9	47.1 ± 15.4			
% Predatores	14.6	12.9 ± 7.3			
% Scrapers	48.0	68.3 ± 16.1			
% Shredder	35.4	36.7 ± 14.6			
No. Clinger Taxa	31.0	20.3 ± 4.6			
Number Of Individuals					
% Chironomidae	2.5	5.2 ± 5.7			
% Coleoptera	17.4	0.6 ± 2.2			
% Diptera + Non-insects	22.5	7.4 ± 7.0			
% Ephemeroptera	28.1	45.8 ± 15.1			
% Ephemeroptera that are Baetidae	60.8	28.9 ± 20.8			
% EPT Individuals	60.1	91.9 ± 7.3			
% Odonata		0.0 ± 0.0			
% of 2 dominant taxa	34.4	59.5 ± 11.3			

Date: December 6, 2023 12:51 PM

Metrics

Name	LIZ003	Predicted Group Reference Mean ±SD		
% of 5 dominant taxa	67.3	85.1 ± 6.5		
% of dominant taxa	17.3	37.7 ± 10.4		
% Plecoptera	14.4	40.5 ± 13.3		
% Tribe Tanyatarisini				
% Trichoptera that are Hydropsychida	12.7	23.9 ± 23.6		
% Tricoptera	17.6	5.6 ± 3.9		
No. EPT individuals/Chironomids+EPT Individuals	1.0	0.9 ± 0.1		
Total Abundance	26140.0	1449.6 ± 859.7		
Richness				
Chironomidae taxa (genus level only)	1.0	1.0 ± 0.2		
Coleoptera taxa	2.0	0.2 ± 0.5		
Diptera taxa	5.0	2.6 ± 1.1		
Ephemeroptera taxa	3.0	3.7 ± 0.6		
EPT Individuals (Sum)	15600.0	1353.0 ± 804.6		
EPT taxa (no)	16.0	12.3 ± 2.2		
Odonata taxa		0.0 ± 0.0		
Pielou's Evenness	0.8	0.7 ± 0.1		
Plecoptera taxa	6.0	5.4 ± 1.2		
Shannon-Wiener Diversity	2.5	1.9 ± 0.3		
Simpson's Diversity	0.9	0.8 ± 0.1		
Simpson's Evenness	0.3	0.3 ± 0.1		
Total No. of Taxa	27.0	16.5 ± 3.6		
Trichoptera taxa	7.0	3.2 ± 1.3		

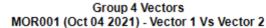
Study Name	CBWQ-Elk
Site	MOR001
Sampling Date	Oct 04 2021
Know Your Watershed Basin	Central Kootenay
Province / Territory	British Columbia
Terrestrial Ecological Classification	Montane Cordillera EcoZone
	Northern Continental Divide EcoRegion
Coordinates (decimal degrees)	49.35806 N, 115.00080 W
Altitude	942
Local Basin Name	Morrissey Creek
	Central Kootenay
Stream Order	4


Figure 1. Location Map

Across Reach Aerial (No image found)

Down Stream

Up Stream


Cabin Assessment Results

Reference Model Summary			
Model Columbia Basin 2020			
Analysis Date	December 06, 2023		
Taxonomic Level	Family		

Cabin Assessment Results

- Gubiii 7 (GGGGGIII GIII 1 (GGGIIG	
Predictive Model Variables	Altitude
	Drainage-Area
	Longitude
	Natl-Grassland
	Natl-ShrubLow
	Natl-Water
	Precip10_Oct
	Reach-%CanopyCoverage
	Sedimentary
	Slope
	SlopeMax
	Temp12_DECmin

Reference Groups	1	2	3	4	5	6
Number of Reference Sites	13	24	28	35	32	15
Group Error Rate	53.8%	55.2%	34.1%	52.2%	23.1%	29.4%
Overall Model Error Rate	39.4%					
Probability of Group Membership	3.6%	25.0%	14.3%	44.8%	9.8%	2.5%
CABIN Assessment of MOR001 on Oct 04,	Highly Divergent					
2021						

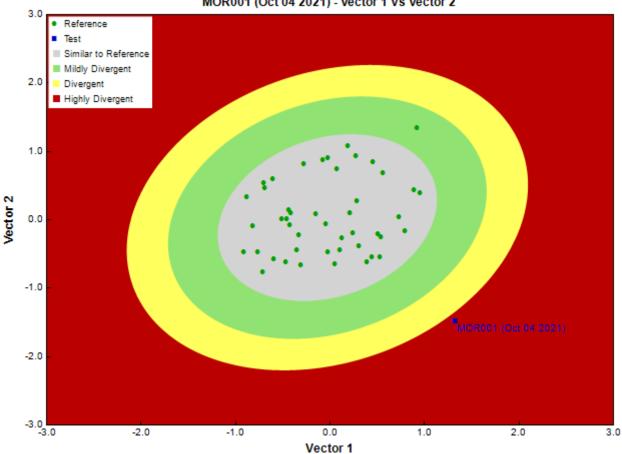


Figure 3. CABIN ordination assessment of the test site with the predicted group of reference sites. Each axis represents the relative abundance of the entire benthic invertebrate community with different organisms weighted differently on each axis.

Sample Information

Sampling Device	Kick Net
Mesh Size	400
Sampling Time	3

Sample Information

Taxonomist	Pina Viola, Consultant		
	Marchant Box		
Sub-Sample Proportion	5/100		

Community Structure

Phylum	Class	Order	Family	Raw Count	Total Count
Arthropoda	Arachnida	Trombidiformes	Hydryphantidae	1	20.0
			Lebertiidae	8	160.0
			Sperchontidae	5	100.0
			Torrenticolidae	2	40.0
	Insecta	Coleoptera	Elmidae	10	200.0
		Diptera	Chironomidae	12	240.0
			Empididae	1	20.0
			Tipulidae	14	280.0
		Ephemeroptera	Baetidae	8	160.0
			Ephemerellidae	3	60.0
			Heptageniidae	67	1,340.0
			Leptophlebiidae	6	120.0
		Plecoptera	Capniidae	2	40.0
			Nemouridae	8	160.0
			Perlidae	2	40.0
			Perlodidae	2	40.0
			Taeniopterygidae	1	20.0
		Trichoptera	Brachycentridae	12	240.0
		Hydropsychidae	35	700.0	
			Lepidostomatidae	167	3,340.0
			Rhyacophilidae	1	20.0
			Total	367	7,340.0

Metrics

Name	MOR001	Predicted Group Reference Mean ±SD					
Bray-Curtis Distance	0.82	0.3 ± 0.1					
Biotic Indices							
Hilsenhoff Family index (Mid-Atlantic)	2.2	3.2 ± 0.4					
Hilsenhoff Family index (North-West)	2.2	2.9 ± 0.3					
Intolerant taxa		1.0 ± 0.0					
Long-lived taxa	4.0	1.9 ± 1.0					
Tolerant individuals (%)		0.5 ± 0.4					
Functiona	l Measures						
% Filterers		0.3					
% Gatherers	27.5	47.1 ± 15.4					
% Predatores	22.1	12.9 ± 7.3					
% Scrapers	33.0	68.3 ± 16.1					
% Shredder	58.3	36.7 ± 14.6					
No. Clinger Taxa	21.0	20.3 ± 4.6					
Number Of	Individuals						
% Chironomidae	3.3	5.2 ± 5.7					
% Coleoptera	2.7	0.6 ± 2.2					
% Diptera + Non-insects	11.7	7.4 ± 7.0					
% Ephemeroptera	22.9	45.8 ± 15.1					
% Ephemeroptera that are Baetidae	9.5	28.9 ± 20.8					
% EPT Individuals	85.6	91.9 ± 7.3					
% Odonata		0.0 ± 0.0					
% of 2 dominant taxa	63.8	59.5 ± 11.3					
% of 5 dominant taxa	80.4	85.1 ± 6.5					
% of dominant taxa	45.5	37.7 ± 10.4					
% Plecoptera	4.1	40.5 ± 13.3					
% Tribe Tanyatarisini							
% Trichoptera that are Hydropsychida	16.3	23.9 ± 23.6					
% Tricoptera	58.6	5.6 ± 3.9					
No. EPT individuals/Chironomids+EPT Individuals	1.0	0.9 ± 0.1					

Date: December 6, 2023 12:51 PM

Metrics

11001100					
Name	MOR001	Predicted Group Reference Mean ±SD			
Total Abundance	7340.0	1449.6 ± 859.7			
Ri	chness				
Chironomidae taxa (genus level only)	1.0	1.0 ± 0.2			
Coleoptera taxa	1.0	0.2 ± 0.5			
Diptera taxa	3.0	2.6 ± 1.1			
Ephemeroptera taxa	4.0	3.7 ± 0.6			
EPT Individuals (Sum)	6280.0	1353.0 ± 804.6			
EPT taxa (no)	13.0	12.3 ± 2.2			
Odonata taxa		0.0 ± 0.0			
Pielou's Evenness	0.6	0.7 ± 0.1			
Plecoptera taxa	5.0	5.4 ± 1.2			
Shannon-Wiener Diversity	1.9	1.9 ± 0.3			
Simpson's Diversity	0.7	0.8 ± 0.1			
Simpson's Evenness	0.2	0.3 ± 0.1			
Total No. of Taxa	21.0	16.5 ± 3.6			
Trichoptera taxa	4.0	3.2 ± 1.3			

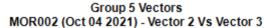
Site Description

one a coompact				
Study Name	CBWQ-Elk			
Site	MOR002			
Sampling Date	Oct 04 2021			
Know Your Watershed Basin	Central Kootenay			
Province / Territory	British Columbia			
Terrestrial Ecological Classification	Montane Cordillera EcoZone			
	Northern Continental Divide EcoRegion			
Coordinates (decimal degrees)	49.42076 N, 114.91049 W			
Altitude	1529			
Local Basin Name	Morrissey Creek			
	Central Kootenay			
Stream Order	3			

Figure 1. Location Map

Across Reach Aerial (No image found)

Up Stream


Cabin Assessment Results

Reference Model Summary				
Model Columbia Basin 2020				
Analysis Date	December 06, 2023			
Taxonomic Level	Family			

Cabin Assessment Results

Cubin 7 tococomont 1 toculto	
Predictive Model Variables	Altitude
	Drainage-Area
	Longitude
	Natl-Grassland
	Natl-ShrubLow
	Natl-Water
	Precip10_Oct
	Reach-%CanopyCoverage
	Sedimentary
	Slope
	SlopeMax
	Temp12 DECmin

Reference Groups	1	2	3	4	5	6
Number of Reference Sites	13	24	28	35	32	15
Group Error Rate	53.8%	55.2%	34.1%	52.2%	23.1%	29.4%
Overall Model Error Rate	39.4%					
Probability of Group Membership	2.4%	0.9%	5.8%	7.7%	83.0%	0.2%
CABIN Assessment of MOR002 on Oct 04,	Similar to Reference					
2021						

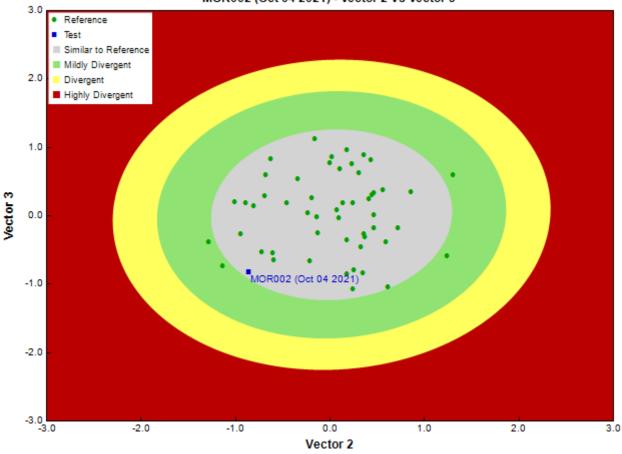


Figure 3. CABIN ordination assessment of the test site with the predicted group of reference sites. Each axis represents the relative abundance of the entire benthic invertebrate community with different organisms weighted differently on each axis.

Sample Information

Sampling Device	Kick Net
Mesh Size	400
Sampling Time	3

Sample Information

Taxonomist	Pina Viola, Consultant
	Marchant Box
Sub-Sample Proportion	11/100

Community Structure

Phylum	Class	Order	Family	Raw Count	Total Count
Arthropoda	Insecta	Coleoptera	Elmidae	7	63.6
		Diptera	Chironomidae	122	1,109.1
			Empididae	2	18.2
			Tipulidae	2	18.2
		Ephemeroptera	Ameletidae	4	36.4
			Baetidae	76	691.0
			Ephemerellidae	7	63.6
			Heptageniidae	41	372.8
			Leptophlebiidae	2	18.2
		Plecoptera	Capniidae	16	145.5
			Chloroperlidae	27	245.4
			Nemouridae	9	81.9
			Perlidae	3	27.3
			Perlodidae	6	54.6
		Trichoptera		2	18.2
			Brachycentridae	12	109.1
			Glossosomatidae	2	18.2
			Lepidostomatidae	2	18.2
			Rhyacophilidae	3	27.3
			Uenoidae	5	45.5
			Total	350	3,182.3

Metrics

Name	MOR002	Predicted Group Reference Mean ±SD
Bray-Curtis Distance	0.56	0.4 ± 0.1
Biotic 1	Indices	
Hilsenhoff Family index (Mid-Atlantic)	3.4	3.4 ± 0.4
Hilsenhoff Family index (North-West)	3.4	3.1 ± 0.5
Intolerant taxa		1.0 ± 0.0
Long-lived taxa	3.0	1.7 ± 1.2
Tolerant individuals (%)		0.3 ± 0.0
	Measures	
% Filterers		
% Gatherers	48.6	45.8 ± 14.9
% Predatores	42.3	14.8 ± 9.8
% Scrapers	37.4	59.4 ± 19.6
% Shredder	13.7	30.7 ± 17.4
No. Clinger Taxa	27.0	19.8 ± 4.0
	Individuals	7.5.1.0.6
% Chironomidae	35.1	7.5 ± 8.6
% Coleoptera		0.1 ± 0.3
% Diptera + Non-insects	36.2	10.7 ± 9.9
% Ephemeroptera	37.4 58.5	47.2 ± 15.8 25.4 ± 20.8
% Ephemeroptera that are Baetidae % EPT Individuals	61.8	$\begin{array}{c} 23.4 \pm 20.8 \\ 89.2 \pm 10.0 \end{array}$
% Odonata		0.0 ± 0.0
% of 2 dominant taxa	56.9	58.3 ± 10.6
% of 5 dominant taxa	81.0	83.6 ± 6.3
% of dominant taxa	35.1	37.8 ± 11.1
% Plecoptera	17.5	36.3 ± 16.7
% Tribe Tanyatarisini		33.3 = 10.7
% Trichoptera that are Hydropsychida	0.0	25.4 ± 24.6
% Tricoptera	6.9	5.7 ± 3.9
No. EPT individuals/Chironomids+EPT Individuals	0.6	0.9 ± 0.1
Total Abundance	3181.8	4661.0 ± 3119.0

Date: December 6, 2023 12:51 PM

Metrics

Name	MOR002	Predicted Group Reference Mean ±SD
Rich	ness	
Chironomidae taxa (genus level only)	1.0	1.0 ± 0.1
Coleoptera taxa	1.0	0.1 ± 0.3
Diptera taxa	3.0	2.8 ± 1.0
Ephemeroptera taxa	5.0	3.7 ± 0.5
EPT Individuals (Sum)	1954.5	4035.4 ± 2618.4
EPT taxa (no)	15.0	12.3 ± 1.9
Odonata taxa		0.0 ± 0.0
Pielou's Evenness	0.7	0.7 ± 0.1
Plecoptera taxa	5.0	5.5 ± 1.1
Shannon-Wiener Diversity	2.1	1.9 ± 0.3
Simpson's Diversity	0.8	0.8 ± 0.1
Simpson's Evenness	0.3	0.3 ± 0.1
Total No. of Taxa	19.0	17.0 ± 3.1
Trichoptera taxa	5.0	3.1 ± 1.2

Appendix B: Raw CABIN Datasheets

Elk River Alliance 71

☑ Occup	ational Health & Sa	fety: Site Inspection	Sheet co	mpleted	
	SITE DATA				
		E\kLocal			
River/Stream	Name: Alexano	ler Creek Stream	m Order: (m	nap scale 1:50,000)	
Select one: I	Test Site Potentia	I Reference Site	an manyan		
Geographi Take left Follow d valk w	cal Description/No turnoff from irt road thron Michel to	tes: highway before 19th forest - states. confluen	re Mich ay right ice. Sie	nel Cr. bridge (that. Park at rive e is a 70 m y	spar = AB) er er er
rrounding L	and Use: (check those	present) Inform	nation Sour	ce: visual, may	br
		Agriculture Commercial/Indus			
	ounding Land Use: (ch	eck one) Inform	nation Sour	ce: VISUAL	
Forest					
	☐ Field/Pasture	Agriculture	en a suttre	Residential/Urban	
		Agriculture	en a suttre		Perchang.
Logging	☐ Field/Pasture ☐ Mining	Agriculture	trial [Residential/Urban Other	prototores.
Logging cation Da	☐ Field/Pasture ☐ Mining ta	☐ Agriculture ☐ Commercial/Indus	trial [Residential/Urban Other	2 potentials
Logging cation Da	☐ Field/Pasture ☐ Mining ta A03 N Longitude	☐ Agriculture ☐ Commercial/Indus	etrial [Residential/Urban Other	Protocolors
Logging cation Da ude: 49.0	Field/Pasture Mining Ita T403 N Longitude (fast or mast)	☐ Agriculture ☐ Commercial/Indus	etrial [Residential/Urban Other	restorated to the second
Logging Cation Da ude: 49.0 ation: 40.0	☐ Field/Pasture ☐ Mining ta A03 N Longitude	☐ Agriculture ☐ Commercial/Indus	etrial [Residential/Urban Other	manufactures of the second
Logging Cation Da ude: 49.0 ation: 40.0	Field/Pasture Mining Ita Ita Ita Ita Ita Ita Ita It	☐ Agriculture ☐ Commercial/Indus - 114.71972 W (E	etrial [Residential/Urban Other	5
ation: 403	Field/Pasture Mining Ita Ita Ita Ita Ita Ita Ita It	☐ Agriculture ☐ Commercial/Indus - 114.71972 W (E	etrial [Residential/Urban Other	5
Logging cation Da ude: 49.0 ation: 40.0 Location	Field/Pasture Mining Ita T403 N Longitude (fast or mast)	☐ Agriculture ☐ Commercial/Indus - 114.71972 W (E	etrial [Residential/Urban Other Other Other:	5
Logging cation Da ude: 49.0	Field/Pasture Mining Ita MO3 N Longitude (fast or mast) Map Drawing	☐ Agriculture ☐ Commercial/Indus - 114.71972 W (E	etrial [Residential/Urban Other Other Other:	12
Logging cation Da ude: 49.0 ation: 40.0 Location	Field/Pasture Mining Man Map Drawing Mic March	☐ Agriculture ☐ Commercial/Indus - 114.71972 W (E	etrial [Residential/Urban Other Other Other:	12
Logging ation Da ude: 49.0 ation: 40.0 Location	Field/Pasture Mining Ita MO3 N Longitude (fast or mast) Map Drawing	☐ Agriculture ☐ Commercial/Indus - 114.71972 W (E	etrial [Residential/Urban Other Other Other:	LZ DER
Logging cation Da ude: 49.0 ation: 40.0 Location	Field/Pasture Mining Ita Map Drawing Mich	☐ Agriculture ☐ Commercial/Indus - 114.71972 W (D GPS Datum: ☐ GRS	etrial [Residential/Urban Other Other Other:	DER
Logging cation Da ude: 49.0 ation: 40.0 Location	Field/Pasture Mining Man Map Drawing Mic March	☐ Agriculture ☐ Commercial/Indus - 11 4. ¬19¬2 W (E GPS Datum: ☐ GRS	etrial [Residential/Urban Other Other Other:	12

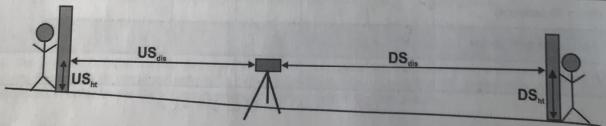
MCCallum Site Code: ALX OO

Field Crew: Chad Hughes, Kaileigh

	Site Code: ALXO
· · · · · · · ·	
Field Crew: CH, WM 15/09/200	91
Field Crew: CH, VON Sampling Date: (DD/MM/YYYY) 15/09/2003	
Photos	
Substrate (exposed)	
REACH DATA (represents 6 times bankfull width)	
1. Habitat Types: (check those present) Riffle Rapids Straight run	☐ Pool/Back Eddy
2. Canopy Coverage: (stand in middle of stream and look up,	, check one) 51-75 %
2. Canopy Coverage: (stand in middle of state and area to be tap) 2. Canopy Coverage: (stand in middle of state and area to be tap) 3. Macrophyte Coverage: (not algae or moss, check one) 2. Canopy Coverage: (stand in middle of state and area to be tap) 3. Macrophyte Coverage: (not algae or moss, check one) 2. Canopy Coverage: (stand in middle of state and area to be tap) 3. Macrophyte Coverage: (not algae or moss, check one) 4. Streamside Vegetation: (check those present)	51-75 %
deciduous deciduous	s trees Coniferous trees
5. Dominant Streamside Vegetation: (check one) ferms/grasses shrubs deciduous 6. Periphyton Coverage on Substrate: (benthic algae, not moss,	trong []
6. Periphyton Coverage on Substrate: (benthic algae, not moss,	Check and
1 - Rocks are not slippery, no obvious colour (thin la 2 - Rocks are slightly slippery, yellow-brown to light algae (1-5 mm thick) 4 - Rocks are very slippery (algae can be removed up to dark brown algae) (5 -	
2 - Rocks are slightly slippery, yellow-brown to light 3 - Rocks have a noticeable slippery feel (footing is algae (1-5 mm thick)	ayer < 0.5 mm thick)
3 - Rocks have a noticeable slippery feet (feet)	green colour (0,5-1 mm think)
4 - Rocks are use	green colour (0.5-1 mm thick) slippery), with patches of thicker green to brown with thumbnail), numerous large clumps of green
to dark brown algae (algae can be removed to	of tricker green to brown
4 - Rocks are very slippery (algae can be removed we to dark brown algae (5 mm -20 mm thick) 5 - Rocks are mostly obscured by algal mat, extensive long strands (> 20 mm thick) Note: 1 through 5 represent categories entered into the CARN.	vith thumbnail), numerous large clumps of green ve green, brown to black algal mass may have
long strands (> 20 mm think)	/e green
Note: 1 through 5 represent categories entered into the CABIN databate	or green, brown to black algal mass
BENTHIC	nass may have
MACROINVEDTED	ase.
Habitat sampled: (a)	
Habitat sampled: (check one) riffle rapids straight run Person sample	
400 μm mesh Kick Net	
Sampling	
Sampling time (i.e. 3 min.) No. of sample of	ive used: Iso propyl alanka
No. of sample jars Typical No. of sample jars	topropyl alcalor
Typical ST	Bleved on site using "D
Typical depth in kick area (cm) Note: In It Note: In It	sieved on site using "Bucket Swirling Method":
Note: Indicate:	oris collected for QAQC STREAM
Note: Indicate if a sampling method other than the recommended 400 µm me	STREAM, WARC []
CAPIN.	
CABIN Field Sheet June 2012	9sh kick net is
oune 2012	used.

Sampling Date: (DD/MM/YYYY) 15/09/2021 WATER CHEMISTRY DATA Time: 13:30 (24 hr clock) Time zone: Air Temp: (°C) Water Temp: 9.7 (°C) pH: 8.3 Specific Conductance: (µs/cm) DO: 10.06 (mg/L) Turbidity: (NTU) Check if water samples were collected for the following analyses: TSS (Total Suspended Solids) Nitrogen (i.e. Total, Nitrate, Nitrite, Dissolved, and/or Ammonia)
TSS (Total Suspended Solids) Nitrogen (i.e. Total, Nitrate, Nitrite, Dissolved, and/or Ammonia)
Nitrogen (i.e. Total, Nitrate, Nitrite, Dissolved, and/or Ammonia)
Phosphorus (Total, Ortho, and/or Dissolved) Major lons (i.e. Alkalinity, Hardness, Chloride, and/or Sulphate) Other
Note: Determining alkalinity is recommended, as are other analyses, but not required for CABIN assessments.

Slope - Indicate how slope was measured: (check one)


☐ Calculated from map		A SHARE THE PARTY OF THE PARTY	
Scale:	(Note: small scale map recommended if fie	eld measurement is not possible -	i.e. 1:20,000)
		(m)	

OR

Measured in field

Circle device used and fill out table according to device: a. Survey Equipment b. Hand Level & Measuring Tape

Measurements	Upstream (U/S)	Downstream(D/S)	Calculation
^a Top Hairline (T)			
^a Mid Hairline (ht) OR			
^b Height of rod	0.72m	1.55m	
^a Bottom Hairline (B)			
Distance (dis) OR	38m	30m	US _{dis} +DS _{dis} =
^a T-B x 100	^a US _{dis} =T-B	^a DS _{dis} =T-B	
Change in height (Δht)			DS _{ht} -US _{ht} =
Slope (Δht/total dis)			
Olope (Alliticial dis)			

Site Code: ALXOO!

Field Crew: CH, VAN Sampling Date: (DD/MM/YYYY) _15/09/2021

Widths and Depth Location at site: U/S of wick area (Indicate where in sample reach, e	x. d/s of kick area
- 11 11 11 11 11 11 11 11 11 11 11 11 11	
A - Bankfull Width:(m) B - Wetted Stream Width:	(m)
C - Bankfull–Wetted Depth (height from water surface to Bankfull):	(cm)
1c A	CONTRACTOR OF STREET
† † † † B	
V1 V2 V3 V4 V5 D1 D2 D3 D4 D5	
e: ted widths > 5 m, measure a minimum of 5-6 equidistant locations;	

Velocity and Depth

Check appropriate velocity measuring device and fill out the appropriate section in chart below. Distance from shore and depth are required regardless of method:

□ Velocity Head Rod (or ruler): Velocity Equation (m/s) = $\sqrt{[2(\Delta D/100) * 9.81]}$

☐ Rotary meters: Gurley/Price/Mini-Price/Propeller (Refer to specific meter conversion chart for calculation)

Direct velocity measurements:

Marsh-McBirney

Sontek or Other Gobo velocity

Distance for all	1	2			bbo ve	accity	mose
Distance from Shore (m)			3	4	5	6	AV
Depth (D) (cm)							
Velocity Head Rod (ruler)							
Flowing water Depth (D ₁) (cm)							
Depth of Stagnation (D ₂) (cm)			U				
Change in depth ($\Delta D=D_2-D_1$) (cm)				-			
otary meter (AD=D ₂ -D ₁) (cm)		-	>		1	314533	
Revolutions							
Time (minimum 40 seconds)	-						
ect Measurement or calculation							
Velocity (V) (m/s)							
IN Field Sheet June 2012	Soo	flow 4					

CABIN Field Sheet June 2012

Page 4 of 6

	Site Code: ALXOOL
Field Crew: CH, KM	Site Code:
Sampling Date: (DD/MM/YYYY) 15/09/208	21

SUBSTRATE DATA

Surrounding/Interstitial Material

Circle the substrate size category for the surrounding material.

Substrate Size Class	Category
Organic Cover	0
< 0.1 cm (fine sand, silt or clay)	(25)
0.1-0.2 cm (coarse sand)	(2)
0.2-1.6 cm (gravel)	-
1.6-3.2 cm (small pebble)	- 4
3.2-6.4 cm (large pebble)	5
6.4-12.8 cm (small cobble)	6
12.8-25.6 cm (cobble)	1
> 25.6 cm (boulder)	8
Bedrock	9

100 Pebble Count & Substrate Embeddedness

- Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.
- Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.
- Embeddeness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0

	Diameter (cm)	Е		Diameter (cm)	Е		Diameter (cm)	E]	Diameter (cm)	E
1	8.9		26	9.8		51	1.0		76	185	
2	8,4		27	50		52	35		77	194	
3	010		28	64		53	4.4		78	15,4	•
4	8.8		29	2.0		54	5.60		79	9.2	16
5	4.2		30	10.6	1/2	55	2.9		80	39.8	1/29
6	19.1		31	3.3	000	56	10.5		81	7.9	
7	10.4		32	6.0		57	4.9	1912.9	82	11.2	
8	11.3		33	9.5		58	16.0		83	18.8	
9	4,9		34	8.3		59	3.7		84	6.4	
10	13.6	1/4	35	3.4		60	13.9	Ya	85		
11	11. 2		36	1,2		61	15.0		86	7.0	
12	5.9		37	8.8		62	10.2		87	19.2	
13	11.9		38	7.1		63	19.3		88	6-1	
14	12.4		39	3.9		64	15.4		89	2.8	
15	21.5		40	32.0	0	65	37.0		90	S	-
16	5.1		41	2.5		66	10.0		91	2.9	0.
17	6.8		42	1.8		67	5.6	1	92	18.2	
18	19.4		43	4.3		68	7.5		93	8.6	
19	155		44	44		69	10.3		94	18.0	
20	29.0	1/2	45	50		70	142	Vu	95	21.5	
21	0		46	310		71	24.8	17	96	5.5	
22	28.0		47	1.1		72	14.7		97	9049.4	
23	33.0		48	11.0		73	24.3		98	18.3	
24	8.6		49	4.7		74	8.2	MA	99	4.3	
25	14.2		50	29.0	74	75	22.6		100	342	1/5

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

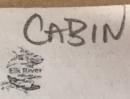
Field Crew:		
SITE INSPECTION Site Inspected by: K.M. Sommunication Information Itinerary left with contact person (include contact numbers) Time checked- Sontact Person: Cygen Matvell Time checked- Sontact Person: Gradio Cell Satellite hotel/pay phone SPO Sone number: (709) 763-9678 Sicle Safety Safety equipment (first aid, fire extinguisher, blanket, emergency kit in vehicle	ОТ	
Itinerary left with contact person (include contact numbers) Itinerary left with contact person (include contact numbers) Time checked- ontact Person: One number: (709) 763-9678 Itinerary left with contact person (include contact numbers) Time checked- ontact Person: One number: (709) 763-9678 Itinerary left with contact person (include contact numbers)	ОТ	
Itinerary left with contact person (include contact numbers) Itinerary left with contact person (include contact numbers) Time checked- ontact Person: One number: (709) 763-9678 Itinerary left with contact person (include contact numbers) Time checked- ontact Person: One number: (709) 763-9678 Itinerary left with contact person (include contact numbers)	ОТ	
Itinerary left with contact person (include contact numbers) Itinerary left with contact person (include contact numbers) Time checked- ontact Person: One number: (709) 763-9678 Itinerary left with contact person (include contact numbers) Time checked- ontact Person: One number: (709) 763-9678 Itinerary left with contact person (include contact numbers)	ОТ	
Itinerary left with contact person (Include contact person: Cygen Module Time checked- Time checked-	ОТ	1
nicle Safety Safety equipment (first aid, fire extinguisher, blanket, emergency kit in vehicle		
icle Safety afety equipment (first aid, fire extinguisher, blanket, emergency kit in vehicle	e)	
afety equipment (first aid, fire extinguisher, blanket, emergency kit in vehicle	e)	
	9)	
quipment and chemicals safely secured for transport		
ehicle parked in safe location; pylons, hazard light, reflective vests if necess	sary	
& Wading Safety		
ding Task Hazard Analysis read by all field staff		
ding Safe Work Procedures read by all field staff		
ream hazards identified (i.e. log jams, deep pools, slippery rocks) worn		
opriate footwear, waders, wading belt		
/ used		

CABIN Field Sheet June 2012

Page 6 of 6

Var

Informa


· liber of the

cheet JI

Elk River Alliance

Velocimeter Measurement Field Sheet

(1	T	*
No.			
Ella Rive			
September 1			

Staff Gauge: NA

ALXOOL Site: Date: 21/09/15
ime: 15:00
Staff: CH, KM
Photos: 1. Completed Field Sheet 2. Upstream

Wett	ed Width: X.3
Bank	ful Width:
Instr	rument ID: Globo Flow
	3. Downstream Hobe
	4. Across (from left bank
П	if possible)

	Distance (m)	Depth (m)	Velocity (m/s)	Notes
1 .	2.10	0	0	
2	2.40	12.5	0.2	
3	2.7	10.0	0.4	
4	3.0	36.2	0.2	
5	3.3	39.0	0.3	
	3.6	36.0	0.3	
7	3.9	36.5	0.5	
8	4.2	26.0	0.5	
	4.5	41.0	0.7	
10	4.8	29.0	0.6	
11	5.1	38.5	0.4	
2	5.4	38:5	0.8	
13	57	38.5	0.7	
14	6.0	412	0.6	
15	6.3	35.5	0.7	

	Contin	ued from ot	her side		
	16	6-1	0.265	0.9	
	17	6.45	0.282	1.1	
	18	68	0.350	1-3	
مال	19	7.15	0.298	0.5	
	20	7.5	0.335	1.1	
	21	7.85	0,320	1.2	and the second second
	22	8.2	0.325	0.2	11 (11 (11 (11 (11 (11 (11 (11 (11 (11
古	23	8.35	8,31.4	0.4	service of a service of several res
	24	89	0. 234	0.0	color silgions in
	25	9.25	0. 17.6	0.5	and the second
	26	9%	And the second second		man marine.
	27	9第			
	28	1678	and the second		
	29		And the State of t		
	30	4.5	0.100	1.3	
	31	6.6	6.362	1.3	and the same of the same
	32	1 2 4	A CHE CLEUK		
	33	4 -	The state of the s		
	34		The sale of the sa		
	35	44			
	Comme	ents: de coe	k directly	3/0	
	shall	low or	left side	w/ rece	it depos

ol.

191

Sen

d:

۱۸

(9

1

Z

ı

Occupational Health & Safety: Site Inspection Sheet completed
PRIMARY SITE DATA
CABIN Study Name: CBWM Local Basin Name: Alexander Creck Elk River
River/Stream Name: Alexander Greek Stream Order: (map scale 1:50,000)
Select one: Test Site Potential Reference Site
Geographical Description/Notes: Alexander Creek near rifle range. High disturbance R, med. disturbance on left
Surrounding Land Use: (check those present) Information Source: Visual
Forest Field/Pasture Agriculture Residential/Urban Logging Mining Commercial/Industrial Other rifle rouge
Dominant Surrounding Land Use: (check one)
Location Data
Latitude: 49.6550 N Longitude: - 114.730 8 W (DMS of DD)
Elevation: 1292? (fasl of masl) GPS Datum: GRS80 (NAD83/WGS84) COther:
Site Location Map Drawing Rifle Range
ATACE MARKET AND A STATE OF THE
Flow
CHIENE
- CROWSNEST FOR THWY
SPARWOOD Alber
ote: Indicate north

Site Code:

Field Crew: Walt + Ka

Sampling Date: (DD/MM/YYYY)

Field Crew: CH, KM		Site Code:	ALXOG3
Sampling Date: (DD/MM/YYYY) _	15/09/2021	1895/	the staying his and
Photos ☐ Field Sheet ☐ Upstream ☐ Substrate (exposed) ☐ :	☐ Downstream Substrate (aquatic)	☐ Across Site ☐ Other	Aerial View
REACH DATA (represents 6 times	s bankfull width)	MAN	
1. Habitat Types: (check those presen	Straight run	☐ Pool/Back Edd	
2. Canopy Coverage: (stand in middle 0 % 1-25 %	of stream and look up, cl	heck one) -75 %	%
3. Macrophyte Coverage: (not algae or 0 %		-75 % 76-100	%
4. Streamside Vegetation: (check those ferns/grasses shi		trees Conifero	us trees
5. Dominant Streamside Vegetation: (c.		trees 🗆 conifero	us trees
6. Periphyton Coverage on Substrate: (benthic algae, not moss,	check one)	
1 - Rocks are not slippery,	no obvious colour (thin l	ayer < 0.5 mm thick)	
2 - Rocks are slightly slippe	ery, yellow-brown to light	green colour (0.5-1 m	nm thick)
3 - Rocks have a noticeable algae (1-5 mm thick)			
4 - Rocks are very slippery to dark brown algae (5 n	(algae can be removed	with thumbnail), nume	erous large clumps of green
5 - Rocks are mostly obscu	red by algal mat, extens	ive green, brown to b	ack algal mass may have
long strands (> 20 mm)	nick)		
Note: 1 through 5 represent categories er		base.	
BENTHIC MACROINVERTEBRA	TE DATA		
Habitat sampled: (check one) I riffle	☐ rapids ☐ straight r	un	
400 μm mesh Kick Net	Preserv	vative used: _ISO Dv	moul alcohol
Person sampling K:M			"Bucket Swirling Method":
Sampling time (i.e. 2 min.)	min YES	S □ NO	
No. of sample jars		debris collected for Q	AQC X
Typical depth in kick area (cm)	Scm		

Note: Indicate if a sampling method other than the recommended 400 μm mesh kick net is used.

Field Crew: CH, WM	Site Code: ALXOO3
Sampling Date: (DD/MM/YYYY) 15/09/2021	21/19/19/19/19/19/19/19/19
	·
WATER CHEMISTRY DATA Time: (24 hr clock)	Time zone:
Air Temp: 15.0°C (°C) Water Temp: 7.3 (°C)	pH: 7.83
Specific Conductance: 292,9 (µs/cm) DO: 10,42 (mg/L) Check if water samples were collected for the following analyses: TSS (Total Suspended Solids) Nitrogen (i.e. Total, Nitrate, Nitrite, Dissolved, and/or Ammonia)	Turbidity: O.O.L (NTU) ORP: 288.5
Phosphorus (Total, Ortho, and/or Dissolved)	- Complete
Major lons (i.e. Alkalinity, Hardness, Chloride, and/or Sulphate)	Ø Other EPH
Note: Determining alkalinity is recommended, as are other analyses, but not requ	uired for CABIN assessments,
CHANNEL DATA	
Slope - Indicate how slope was measured: (check one)	
Calculated from map Scale: (Note: small scale map recommended if field mean contour interval (vertical distance) (m), distance between contour intervals (horizontal distance) slope = vertical distance/horizontal distance =	

Measurements	Upstream (U/S)	Downstream(D/S)	Calculation
^a Top Hairline (T)			Odicalation
^a Mid Hairline (ht) OR			
^b Height of rod			
^a Bottom Hairline (B)	1.510m	1005	
Distance (dis) OR	30.0 m	1.985m 30.0m	US _{dis} +DS _{dis} =
^a T-B x 100	^a US _{dis} =T-B	^a DS _{dis} =T-B	Oodis Dodis
Change in height (Δht)	- Ulo	DO _{dis} -1-B	DS _{ht} -US _{ht} =

US,

OR

Measured in field

Field Crew:Sampling Date: (DD/MM/YYY	r) 15/0	9/20	21	_			
Cumpan					AND THE REAL PROPERTY.		
Widths and Depth Location at site: US of W A - Bankfull Width: Wetted Depth (heigh	m)	В	- Wetted S	tream Wid		, d/s of kid (m) (cm)	k area)
Note: Wetted widths > 5 m, measure a minin Wetted widths < 5 m, measure 3-4 equ	Turn of 5-6 equ	V3 D3 Idistant locarns.	tions;	В		AG J3	MAH
Velocity and Depth Check appropriate velocity measur shore and depth are required regar Velocity Head Rod (or ruler): Rotary meters: Gurley/Price/M Direct velocity measurements	dless of meth Velocity Equa ini-Price/Prop	od: ation (m/s) peller (Refer	= √ [2(ΔD/1	100) * 9.81 neter conve			
	1	2	3	4	5	6	AVG
sistance from Shore (m)				/	/		
epth (D) (cm)			/		/		
elocity Head Rod (ruler)			/	/			
Flowing water Depth (D ₁) (cm)		/		/	The second second		
Depth of Stagnation (D ₂) (cm)		/	2/		- 113-11-11-11	1000	
Change in depth ($\Delta D=D_2-D_1$) (cm)	/	. 0	0/				
tary meter		GIV	1				
Revolutions	13	5					
Time (minimum 40 seconds)	100	1/					
ct Measurement or calculation	0	1					
/elocity (V) (m/s)	1						

Site Code: ALXC Field Crew:

Sampling Date: (DD/MM/YYYY) 15/09/2021

SUBSTRATE DATA

Surrounding/Interstitial Material

Circle the substrate size category for the surrounding material.

Substrate Size Class	Category
	0
Organic Cover	1
< 0.1 cm (fine sand, silt or clay)	(2)
0.1-0.2 cm (coarse sand)	2
0.2-1.6 cm (gravel)	3
1.6-3.2 cm (small pebble)	4
3.2-6.4 cm (large pebble)	5
6.4-12.8 cm (small cobble)	6
12.8-25.6 cm (cobble)	7
	8
> 25.6 cm (boulder)	9
Bedrock	9

100 Pebble Count & Substrate Embeddedness

- Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.
- Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.
- Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0

	Diameter (cm)	E		Diameter (cm)	Е		Diameter (cm)	E		Diameter (cm)	E
1	9,4		26	9.8		51	12.0		76	6.8	
2	33.0		27	29.5		52	8.5		77	305	
3	7.2		28	9.8		53	8.0		78	9.4	
4	9.4		29	0.01		54	13.5		79	10.9	
5	15.8		30	35.0	34	55	5.0		80	14.6	1/4
6	0.5		31	16.0		56	6.8		81	14.4	
7	0.3		32	15.0		57	9.0		82	27.5	
8	10.3		33	17.2		58	10.0		83	16.3	
9	30.7		34	14.4		59	10.0		84	10.6	
10	6.9	0	35	110.2		60	3.6	0	85	7.7	
11	18.5		36	9.7		61	7.5		86	71.0	
12	14.4		37	23.0		62	9.2		87	23.0	
13	13.5		38	10:0		63	8.6		88	31.0	
14	7.7		39	3.1		64	23.1		89	7.6	
15	4.1		40	17.2	1/2	65	15.8		90	5	Debi
16	2.0		41	15,1		66	3.0		91	25.2	.5
17	12.0		42	8.2		67	11.2		92	17.2	
18	11.1		43	11.0		68	21.0		93	7.6	189
19	10.8		44	13.5		69	2.2		94	5.9	
20	125	好	45	18.5		70	13.1	1/4	95	5.8	
21	41		46	4.2		71	6.4	1	96	9.7	
22	13.5		47	5.1		72	18.0		97	13.4	
23	11.2		48	24.0		73	6.0		98	15.1	
24	50.2		49	16.5		74	15.6		99	12	1
25	13.7		50	12.5	OS	75	8.4		100	82.6	8

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

SITE INSPECTION	
Site Inspected by:	
Communication Information	
Itinerary left with contact person (include contact numbers)	
Contact Person: Fvaeri Mottleev Time checked- Form of communication: □ radio □ cell □ satellite □ hotel/pay phone □ SP	in: <u>9:00 A</u> M OT
Phone number: (709) 763-9678	
Vehicle Safety	
Safety equipment (first aid, fire extinguisher, blanket, emergency kit in vehicle	e)
☐ Equipment and chemicals safely secured for transport	
☐ Vehicle parked in safe location; pylons, hazard light, reflective vests if necess	arv
Notes:	
Shore & Wading Safety	
☑ Wading Task Hazard Analysis read by all field staff	
☐ Wading Safe Work Procedures read by all field staff	
☐ Instream hazards identified (i.e. log jams, deep pools, slippery rocks)	
□ PFD worn	
Appropriate footwear, waders, wading belt	
Belay used	

Site Code: ALX

Field Crew: CH, KM

Elk River Alliance

Velocimeter Measurement Field Sheet

Site:	ALX	∞ 3
Date:	2021	19/15
/"me:	10:0	0
Staff:	KM	1014
Photos:	☐ 1. Con	npleted Field Sheet
		2 Unstream

Staff Gauge:
Wetted Width: 8.8
Bankful Width: 10.0
Instrument ID: Global water
3. Downstream
4. Across (from left bank if possible)

	Distance (m)	Depth (m)	Velocity (m/s)	Notes
1 30	0	0	0	
2 60	.30	0	0	1
3 90	.80	16.3	d	7
4 170		22.4		
5 1,50		14.7	.3	
180		28.6	13	
7210		34.8		
8 240		29.8	.2	
270		37.2	.5	
10300		26.9	-4	
11 330		43.6	.5	
2 360		44.8	.5	
13 390		46,4	.4	
14 420		46.4	.5	
15450		50.5	.6	

Contin	ueu nom ot	nel side		
16	6.0	0.20	1.5	
17	6.4	0.188	101	
18	6.8	0.138	0000	
19	72	0-120	0.6	
20	7.6	0.140	0.3	
21	80	0.125	0.6	
22	8.4	0.164	0.2	and the same of the same of
23	8.8	0.05%	0.1	
24	9.2	0044	0	
25	9.6	0.044	0	page and page
26	10.0	0.024	0	
27	de la			
28	Language to be a second of the		A in the second	a commonwear
29			and the same and the same	
30	(3) *			-
31		3 4	and the second second second	
32	3 42		1. 12.00	The second second second
33			1000	And the second s
34		The second		
35	-			
	nte	1990		
Comme	ents:			

Ð./,

39

S

Sampling Date: (DDA:
Sampling Date: (DD/MM/YYYY) OS/10/2021
Occupational Health & Safety: Site Inspection Sheet completed PRIMARY SITE DATE:
PRIMARY SITE DATA
CABIN Study Name:Local Basin Name:Local Basin Name:
River/Stream Name:
Select one: Test Site Potential Reference Site
Geographical Description (A)
Geographical Description/Notes: Part @ Race Trac Gas station, walk dis on trail zon, go down i poap. Site at coolde for across crooled bank us of undercut
Surrounding Land Use: (check those present) Information Source:
Forest Field/Pasture Agriculture Residential/Urban Commercial/Industrial Other
Dominant Surrounding Land Liga: (about a second control of the con
Dominant Surrounding Land Use: (check one) Information Source: Forest Field/Pasture Agriculture Residential/Urban
□ Logging □ Mining □ Commercial/Industrial □ Other
Location Data
Latitude:N Longitude:W (DMS or DD)
Elevation: 1260 (fasl or masl) GPS Datum: GRS80 (NAD83/WGS84) Other:
Site Location Map Drawing Camegound
Elk
- Boivin
- 200 / cobble but
1-102 1 COPINE
1 XNG
11 12 LS Recap
Note: Indicate north
Note: Indicate north After at beginning of gravel banging of
gravel bar (Colon)
CABIN Field Sheet June 2012 Page 1 of 6
CABIN FIGURE STATES

	Site Code: 1000
eld Crew: Kalegh Mcall + Chandre	Site Code: 1000
eld Crew: Kalegh McCarl	65
ampling Date: (DD/MM/YYYY) 05/10/2021	VM
	Across Site Aerial View
Photos Downst	Tother
Diela Silosi	atic)
Substrate (exposed)	h)
REACH DATA (represents 6 times bankfull width	
1. Habitat Types: (check those present) Rapids Straight	run Pool/Back Eddy
2. Canopy Coverage: (stand in middle of stream and 0 %	
3. Macrophyte Coverage: (not algae or moss, check 0 %	k one) %
4. Streamside Vegetation: (check those present) ferns/grasses	deciduous trees Coniferous trees
Li Terris/grasses Li sittati	deciduous trees Coniferous trees
6. Periphyton Coverage on Substrate: (benthic alg	gae, not moss, check one)
1 - Rocks are not slippery, no obviou	s colour (thin layer < 0.5 mm thick)
2 - Rocks are slightly slippery, yellow	-brown to light green colour (0.5-1 mm thick)
	feel (footing is slippery), with patches of thicker green to brown
algae (1-5 mm thick) 4 - Rocks are very slippery (algae ca to dark brown algae (5 mm -20 m	n be removed with thumbnail), numerous large clumps of green m thick)
	gal mat, extensive green, brown to black algal mass may have
Note: 1 through 5 represent categories entered into	the CABIN database.
BENTHIC MACROINVERTEBRATE DA	TA
Habitat sampled: (check one) ☐ riffle ☐ rapid	ds 🔲 straight run
400 μm mesh Kick Net	Preservative used:
Person sampling Kaileial M	Sampled sieved on site using "Bucket Swirling Method":
Sampling time (i.e. 3 min.)	MYES LINO
No. of sample jars	If YES, debris collected for QAQC
Typical depth in kick area (cm) 20	Stream e-Diffuest
Note: Indicate if a sampling method other than the re-	commended 400 μm mesh kick net is used.

Field Crew: _kaik-a	1 15 11-201 1	2	~ ~ ~ ~
Sampling Date: (DD/MN	MYYY) 05/0/20	Site C	ode: <u>RojoVI</u>
	The second secon		
THE CHEWISTRY	DATA Time: 10:30	(24 hr clock) Time :	zone: MT
Air Temp: 8	(°C) Water Temp:	2 (90) -11.	0.10
Specific Conductance:	7-6 (uslam) DO 11	(°C) pH:	0.10
Check if water commit	(µs/cm) DO:	(mg/L) Turb	oidity:1.\0 (NTU) (0)
TSS (Total Suspended	ere collected for the following	analyses:	: 158.2 mV
	rate, Nitrite, Dissolved, and/o		00:164.0 US
The prior do (Total, Off	no. and/or Discolved		
Major Ions (i.e. Alkalini	ty, Hardness, Chloride, and/	or Sulphate)	ner tP+
Note: Determining alkalinity is	recommended, as are other ar		
CHANNEL DATA	as are other ar	nalyses, but not required for the	CABIN assessments.
CHANNEL DATA			
Slope - Indicate how slop	e was measured: (check on	e)	
	(STOCK OF		
Calculated from map	(Note: small scale man and	of her things to be a street	
contour interval (vertical	(Note: small scale map reco	mmended if field measurement m),	is not possible - i.e. 1:20,000).
distance permeet could	our intervals (horizontal dista e/horizontal distance =	()	
OR		Stuff, reliege Reals Tunks	
Measured in field			
Circle device used and	fill out table according to dev	vice:	er. years
	b. Hand Level & Measuring		O
Measurements	Upstream (U/S)	Downstream(D/S)	Calculation
^a Top Hairline (T)		19 1 35 1 2	
^a Mid Hairline (ht) OR			
^b Height of rod			
^a Bottom Hairline (B)		- AT-	
Distance (dis) OR	3/1 16 P. L.	138	US _{dis} +DS _{dis} =
*T-B x 100	^a US _{dis} =T-B	^a DS _{dis} =T-B	IN TOTAL CONTROL OF THE PARTY O
Change in height (Δht)	uio	ulo -	DS _{ht} -US _{ht} =
			0.026
Slope (Δht/total dis)			0,000
Q US	Sdis	DS _{dis}	
44	T	and making	DS
USht	//\		

which McCall	1	1		. 0	A Daniel Commence	processing the spice of the spi	-
d Crew: kaleigh McCall &	110/305	<u>d</u>	000	year year			Ple
npling Date: (DD/MM/YYYY)		114		N.			
		egro	non	1,	reach ex	. d/s of ki	ck area)
idths and Depth	dit	Indica	ate where	in sample	reach, or	(m)	
cation at site: U/S wick next		- N	etted Street	am Width:			
Bankfull Width: 10-2 (m)					9)047 80	(cm)
Bankfull Width: 10-2 (m) Bankfull-Wetted Depth (height from	water surfac	e to Banki	rull).	- Δ.		01 01	
- Bankfull-Wetted Depart (************************************					nino i		
1c		* 1	1	-B-			
VI	V2 D2	V3 V	4 V5 4 D5	/			
Di	Î	a boy and	/				
		+				9.7-0	.4=
ote: /etted widths > 5 m, measure a minimum	of 5-6 equidis	stant location	ns;			Nava pre-13	S-1 (1) 10 (1)
/etted widths < 5 m, measure 3-4 equidist	ant locations.					0/11	
Velocity and Depth Check appropriate velocity measuring hore and depth are required regardle	device and ess of method	fill out the a		section in	chart belo	ow. Distar	nce fron
Velocity and Depth Check appropriate velocity measuring hore and depth are required regardle Velocity Head Rod (or ruler): Velocity measuring the velocity Head Rod (or ruler): Velocity meters: Gurley/Price/Mini-	device and ess of methodolocity Equation-Price/Property	fill out the ad: on (m/s) =	appropriate √ [2(∆D/10 to specific m	e section in 00) * 9.81] leter convers	chart belo	ow. Distar	nce tron
Velocity and Depth Check appropriate velocity measuring hore and depth are required regardle Velocity Head Rod (or ruler): Velocity measuring the velocity Head Rod (or ruler): Velocity meters: Gurley/Price/Mini-	device and ess of methodolocity Equation-Price/Property	fill out the ad: on (m/s) =	appropriate √ [2(∆D/10 to specific m	e section in 00) * 9.81] leter convers	chart belo	or calculati	on)
Velocity and Depth Check appropriate velocity measuring hore and depth are required regardle Velocity Head Rod (or ruler): Velocity measurements: Gurley/Price/Mini- Direct velocity measurements:	device and ess of methodolocity Equation-Price/Property	fill out the ad: on (m/s) = eller (Refer to Birney S	appropriate √ [2(∆D/10 to specific m	e section in 200) * 9.81] eter convers	chart belo	ow. Distar	on)
Pelocity and Depth Theck appropriate velocity measuring hore and depth are required regardle Velocity Head Rod (or ruler): Velocity measurements: Gurley/Price/Mini- Direct velocity measurements: Designation of the property of the propert	device and ess of methodolocity Equation-Price/Property	fill out the ad: on (m/s) = eller (Refer to Birney S	appropriate √ [2(∆D/10 to specific m	e section in 200) * 9.81] eter convers	chart belo	or calculati	on)
Pelocity and Depth Theck appropriate velocity measuring hore and depth are required regardle Velocity Head Rod (or ruler): Velocity measurements: Gurley/Price/Mini- Direct velocity measurements: Depth (D) (cm)	device and ess of methodolocity Equation-Price/Property	fill out the ad: on (m/s) = eller (Refer to Birney S	appropriate √ [2(∆D/10 to specific m	e section in 200) * 9.81] eter convers	chart belo	or calculati	on)
Pelocity and Depth Theck appropriate velocity measuring hore and depth are required regardle Velocity Head Rod (or ruler): Velocity measurements: Gurley/Price/Mini- Direct velocity measurements: Depth (D) (cm)	device and ess of methodolocity Equation-Price/Property	fill out the ad: on (m/s) = eller (Refer to Birney S	appropriate √ [2(∆D/10 to specific m	e section in 200) * 9.81] eter convers	chart belo	or calculati	on)
Velocity and Depth Check appropriate velocity measuring hore and depth are required regardle Velocity Head Rod (or ruler): Velocity measurements: Gurley/Price/Mini- Direct velocity measurements: Distance from Shore (m) Velocity Head Rod (ruler)	device and ess of methodolocity Equation-Price/Property	fill out the ad: on (m/s) = eller (Refer to Birney S	appropriate √ [2(∆D/10 to specific m	e section in 200) * 9.81] eter convers	chart belo	or calculati	on)
Velocity and Depth Theck appropriate velocity measuring hore and depth are required regardle Velocity Head Rod (or ruler): Velocity Head Rod (or ruler): Velocity measurements: Direct velocity measurements: Distance from Shore (m) Velocity Head Rod (ruler) Velocity Head Rod (ruler) Flowing water Depth (D ₁) (cm)	device and ess of methodolocity Equation-Price/Property	fill out the ad: on (m/s) = eller (Refer to Birney S	appropriate √ [2(∆D/10 to specific m	e section in 200) * 9.81] eter convers	chart belo	or calculati	on)
Velocity and Depth Theck appropriate velocity measuring hore and depth are required regardle Velocity Head Rod (or ruler): Velocity Head Rod (or ruler): Velocity Measurements: Direct velocity measurements: Distance from Shore (m) Velocity Head Rod (ruler) Flowing water Depth (D₁) (cm) Depth of Stagnation (D₂) (cm) Change in depth (ΔD=D₂-D₁) (cm)	device and ess of methodolocity Equation-Price/Property	fill out the ad: on (m/s) = eller (Refer to Birney S	appropriate √ [2(∆D/10 to specific m	e section in 200) * 9.81] eter convers	chart belo	or calculati	on)
Velocity and Depth Theck appropriate velocity measuring hore and depth are required regardle Velocity Head Rod (or ruler): Velocity Head Rod (or ruler): Velocity Measurements: Direct velocity measurements: Distance from Shore (m) Velocity Head Rod (ruler) Flowing water Depth (D₁) (cm) Depth of Stagnation (D₂) (cm) Change in depth (ΔD=D₂-D₁) (cm)	device and ess of methodolocity Equation-Price/Property	fill out the ad: on (m/s) = eller (Refer to Birney S	appropriate √ [2(∆D/10 to specific m	e section in 200) * 9.81] eter convers	chart belo	or calculati	on)
Velocity and Depth Check appropriate velocity measuring hore and depth are required regardle Velocity Head Rod (or ruler): Velocity Head Rod (or ruler): Velocity Minipole Price (Minipole Price) Direct velocity measurements: Distance from Shore (m) Velocity Head Rod (ruler) Flowing water Depth (D₁) (cm) Depth of Stagnation (D₂) (cm) Change in depth (ΔD=D₂-D₁) (cm)	device and ess of methodolocity Equation-Price/Property	fill out the ad: on (m/s) = eller (Refer to Birney S	appropriate √ [2(∆D/10 to specific m	e section in 200) * 9.81] eter convers	chart belo	or calculati	on)
Celocity and Depth Check appropriate velocity measuring thore and depth are required regardle Velocity Head Rod (or ruler): Velocity Head Rod (or ruler): Velocity Measurements: Gurley/Price/Mini- Direct velocity measurements: Distance from Shore (m) Depth (D) (cm) Velocity Head Rod (ruler) Flowing water Depth (D₁) (cm) Depth of Stagnation (D₂) (cm) Change in depth (ΔD=D₂-D₁) (cm) Rotary meter Revolutions Time (minimum 40 seconds)	device and ess of methodolocity Equation-Price/Property	fill out the ad: on (m/s) = eller (Refer to Birney S	appropriate √ [2(∆D/10 to specific m	e section in 200) * 9.81] eter convers	chart belo	or calculati	on)
Velocity and Depth Check appropriate velocity measuring shore and depth are required regardle Velocity Head Rod (or ruler): Velocity Head Rod (or ruler): Velocity Measurements: Direct velocity measurements: Distance from Shore (m) Depth (D) (cm) Velocity Head Rod (ruler) Flowing water Depth (D₁) (cm) Depth of Stagnation (D₂) (cm) Change in depth (ΔD=D₂-D₁) (cm) Rotary meter Revolutions	device and ess of methodolocity Equation-Price/Property	fill out the ad: on (m/s) = eller (Refer to Birney S	appropriate √ [2(∆D/10 to specific m	e section in 200) * 9.81] eter convers	chart belo	or calculati	nce trom

Site Code: Boxo O

Sampling Date: (DD/MM/YYYY) OS/10/2021

SUBSTRATE DATA

Surrounding/Interstitial Material

Circle the substrate size category for the surrounding

Substrate Size Class	
Organic Cover	Category
< 0.1 cm (fine sand silt or alar)	0
0.1-0.2 cm (coarse sand)	1
0.2-1.6 cm (gravel)	(2)
1.6-3.2 cm (small pebble)	(3)
3.2-6.4 cm (large pebble)	(4)
6.4-12.8 cm (small cobble)	6
12.8-25.6 cm (cobble)	7
> 25.6 cm (boulder)	8
Bedrock	0

100 Pebble Count & Substrate Embeddedness

- Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.
- Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.
- Embeddeness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, 1/2

	Diameter (cm)	Е		Diameter (am)		74 emb	edded, 1/2 embed	ided, 1/	4 embe	edded, unembedd	ed = 0
1	3.4		26	Diameter (cm)	Е		Diameter (cm)	E		Diameter (cm)	E
2	4.7		27	11-7		51	6.5		76	17.1	
3	65			9.5		52	5.3		77	17.9	
4	10	-	28	13.5		53	R.5		78	6.2	
5	8.0		29	6-8	-	54	19.5		79	1.5	
6	18.5		30	9.5	×4	55	7.0	-	80	0.9	0
	4.3		31	2.8		56	6.7		81	6.2	
7	9.5		32	5.0		57	4.0	horas	82	18.0	W- 11
8	8.5		33	14.5		58	5.5		83	3.8	
9	2.7		34	6.3	141,000	59	11.6	Mope	84	6.1	64° 23
10	4.7		35	7.0		60	45	0	85	9.0	
11	3.0		36	16.5		61	11.8		86	2.9	
12	17.0	74	37	3.5		62	25		87	12:8	
13	14.5		38	4.8		63	3.0		88	7.0	
14	6.4		39	6.2		64	50		89	10.7	monte
15	9.5		40	7.7	0	65	121		90	7.2	314
16	8.7		41	7.0		66	2.0		91	7.4	
17	10.0		42	80		67	19.2	1.00111	92	11.8	0.00
18	11.0		43	16.4		68	6.6		93	11.4	
19	12.5		44	11.6		69	15.1		94	17.0	
20	3.5	0	45	15.7		70	7.4	Va	95	8-2	
21	13.7		46	10.5		71	13.0		96	10.9	
	18		47	7.3		72	4.2		97	12.8	
22	1.0		48	11.5		73	5.4		98	6.5	188
23	12.5		49	3.8		74	2.9		99	00	
24	4.7			NAME OF TAXABLE PARTY.	0	75	15.4		100	14-1	1/2
25	3-8		50	3.4							

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the wore: The Wolffall Doc (i.e. Made automatically in the CABIN database using the 100 pebble data. All 100 pebbles must substrate classes will be calculated automatically in the CABIN database tool to perform substrate calculations. be measured in order for the CABIN database tool to perform substrate calculations.

Field Crew: Kailigh McCall + Chandra	Buhanan Site Code: Rovo
Sampling Date: (DD/MM/YYYY) 65/10/ 2021	
MACHINE METERS TO THE	ATAO STASTES
SITE INS	SPECTION
Site Inspected by: kaika MaCall	

Communication Information ☐ Itinerary left with contact person (include contact numbers) Contact Person: (Time checked-in: 10.30 Form of communication: ☐ radio ☐ cell ☐ satellite ☐ hotel/pay phone ☐ SPOT Phone number: (250) 423-03 44 **Vehicle Safety** Safety equipment (first aid, fire extinguisher, blanket, emergency kit in vehicle) Equipment and chemicals safely secured for transport Vehicle parked in safe location; pylons, hazard light, reflective vests if necessary Notes: **Shore & Wading Safety** Wading Task Hazard Analysis read by all field staff ☑ Wading Safe Work Procedures read by all field staff ☐ Instream hazards identified (i.e. log jams, deep pools, slippery rocks) ☐ PFD worn Appropriate footwear, waders, wading belt ☐ Belay used Notes:

CABIN

Site:	P	10/0	Stat	f Gauge:
Date:	05	110/2021	We	tted Width:
Time:	11	:30	Ban	kful Width:
Staff:	ko	ileigh Modall-Cl	mola Inst	rument ID: Flowarche
Photos:		1. Completed Field Sheet	Johnson -	3. Downstream
	0	2. Upstream		4. Across (from left bank if possible)

	Distance (m)	Depth (m)	Velocity (m/s)	Notes
1	0.5	0.03	0	
2	0.85	0035	8	
3	4.2	0.01	8	
4	1.55	0	8	
5	225	0.029	D	
6	26	0.036	10	
7	2.95	0.020	9	
8	3.7	0.037	0.4	
9	3.65	0.050	0.4	
10	4	0.155	0.6	
11	4.35	0.190	1.(
12	4.7	0.138	1.0	
13	505	0:163	(,)	
14	5.4	0.240	0.8	
15	5.75	0.225	0.5	

Continued from other side

Conti	nuea from ot	ilei side		
16	25	11.8	0.3	
17	3.0	12.1	B.1	
18	3.0	6.8	0.1	
19	3.1	90	0.7	
20	3.2	0.8	0.1	
21	3.3	7.4	0	
22	5-4	6.5	0	
23	3.5	9.0	0.	-
24	3.6	9.5	0.2	
25	3.7	9.4	0.2	
26	3.8	3.0	0	The same of the
27			32 1	
28		10 3	19.4	-
29				
30		Contract Contract	1	
31		Commence of the second second second	- Carrier and	
32		de la company de		
33				
34				
35				

.1)

9J

Si

Comments:	The second section of the section of the second section of the section of the second section of the second section of the section of th

PRIMARY SITE DATA
CABIN Study Name: CBWO-Elle Local Basin Name: Ell River Watershee
River/Stream Name: Bivin Creek Stream Order: (map scale 1:50,000)
Select one: Test Site Potential Reference Site
Geographical Description/Notes:
Park at cross-country Ski-trails, follow path to bridge walk v/s before bridge (LWB) until "rightmane before true" (attemp logger site) Information Source: Visual maps, local knowledge (LWB) and Source: Visual maps, local knowledge (LWB) and Source: Visual maps, local knowledge (LWB) and Source: Visual maps, local knowledge (LWB) until "rightmane before true" (attemp logger site) Information Source: Visual maps, local knowledge (LWB) until "rightmane before the control of the contr
Logging Li Mining Commercial/Industrial Li Other recreation
Cominant Surrounding Land Use: (check one) Information Source: Forest ☐ Field/Pasture ☐ Agriculture ☐ Residential/Urban Logging ☐ Mining ☐ Commercial/Industrial ☐ Other
1 - Rocks are not allopany, no obvious colour (tola leyer < 0.5 mm theta)
ocation Data
atitude: 50.016/46N Longitude: - 114.93726 W (DMS or DD)
levation: 4429 (fast or mast) GPS Datum: GRS80 (NAD83/WGS84) Other:
1327 masi
ite Location Map Drawing
TORRESTANCE DE SPRENTANCE DE S
" Brush of the country described into the CAETH described
Lichnet overhauseins.
FLOW FLOW
11/
Cohlas Total 10000
X-counter Ma temp 109 gen
PARK
ote: Indicate north

Occupational Health & Safety: Site Inspection Sheet completed

Site Code: BOICO2
A Charlett
Sampling Date: (DD/MM/YYYY) O S/10/2021
Sampling Date. (DDTM)
Photos ☐ Downstream ☐ Across Site ☐ Aerial View ☐ Field Sheet ☐ Other ☐ Other
☐ Substrate (exposed) ☐ Substrate (aquatic) ☐ Other
REACH DATA (represents 6 times bankfull width)
1. Habitat Types: (check those present) Riffle Rapids Straight run Pool/Back Eddy
2. Canopy Coverage: (stand in middle of stream and look up, check one) 0 %
3. Macrophyte Coverage: (not algae or moss, check one) 0 %
4. Streamside Vegetation: (check those present) ferns/grasses shrubs deciduous trees coniferous trees
5. Dominant Streamside Vegetation: (check one) Grans/grasses shrubs deciduous trees coniferous trees
6. Periphyton Coverage on Substrate: (benthic algae, not moss, check one)
1 - Rocks are not slippery, no obvious colour (thin layer < 0.5 mm thick) 2 - Rocks are slightly slippery, yellow-brown to light green colour (0.5-1 mm thick) 3 - Rocks have a noticeable slippery feel (footing is all)
3 - Rocks have a noticeable slippery feel (footing is aligned)
3 - Rocks have a noticeable slippery feel (footing is slippery), with patches of thicker green to brown 4 - Rocks are very slippery (algebrase).
to dark brown algoe (5 see can be removed with thumbpail)
5 - Rocks are mostly obscured by algal mat, extensive
5 - Rocks are mostly obscured by algal mat, extensive green, brown to black algal mass may have Note: 1 through 5 represent categories.
diegories entered into the control of the control o
MACKUINVERTEDDATE
Habitat sampled: (check one) riffle rapids straight run
400 μm mesh Kick Net
Person sampling Preson sampling
Sampling time (i.e. 3 min.) Sampled sieved on site using
No. of sample jars
Typical depth in kick area (cm)
Note: Indicate if a sampling method other than the record

Note: Indicate if a sampling method other than the recommended 400 μm mesh kick net is used.

field Crew:	CB	Site Code:	60010
Sampling Date: (DD/MM/Y)	m 05/10/5	2021	
contour interval (vertical distance between contour slope = vertical distance/ OR Measured in field Circle device used and fill	(°C) Water Temp:	(°C) pH:	1.2Y(NTU) (0) nn Mg 9 8.1 assessments.
	. Hand Level & Measuring	Downstream(D/S)	Calculation
Measurements	Upstream (U/S)	Downstream(D/O)	
^a Top Hairline (T)			
^a Mid Hairline (ht) OR	1060	2075	
^b Height of rod	1,268	2.910	
^a Bottom Hairline (B)			US _{dis} +DS _{dis} =
^b Distance (dis) OR	30	30	60
^a T-B x 100	^a US _{dis} =T-B	^a DS _{dis} =T-B	DS _{ht} -US _{ht} =
Change in height (Δht)			1.701
Slope (Δht/total dis)			8945
USht	S _{dis}	DS _{dis}	DSht
CABIN Field Sheet June 20	012 Page 3 of 6		CAIRIO

ab		S	V
	A		

Note:
Wetted widths > 5 m, measure a minimum of 5-6 equidistant locations;
Wetted widths < 5 m, measure 3-4 equidistant locations.

Velocity and Depth & sel flow field she

Check appropriate velocity measuring device and fill out the appropriate section in chart below. Distance from shore and depth are required regardless of method:

□ Velocity Head Rod (or ruler): Velocity Equation (m/s) = $\sqrt{(2(\Delta D/100) * 9.81)}$

Rotary meters: Gurley/Price/Mini-Price/Propeller (Refer to specific meter conversion chart for calculation)

Direct velocity measurements:

Marsh-McBirney

Sontek or
Other

	1	2	3	4	5	6	AVG
Distance from Shore (m)							
Depth (D) (cm)							
Velocity Head Rod (ruler)							
Flowing water Depth (D ₁) (cm)							
Depth of Stagnation (D₂) (cm)							
Change in depth (ΔD=D ₂ -D ₁) (cm)	8-1-20						
Rotary meter							33.64
Revolutions							No. of Lot
Time (minimum 40 seconds)							
Direct Measurement or calculation							
Velocity (V) (m/s)							

eld Crew:	lom, CB	Site Code: Bolosa	-
Sampling Date: (DD/M	MYYYY) 5/10/2021	Company of the second	

SUBSTRATE DATA

Surrounding/Interstitial Material

Circle the substrate size category for the surrounding material.

Substrate Size Class	Category
Organic Cover	0
< 0.1 cm (fine sand, silt or clay)	1
0.1-0.2 cm (coarse sand)	2
0.2-1.6 cm (gravel)	(3)
1.6-3.2 cm (small pebble)	4
3.2-6.4 cm (large pebble)	5
6.4-12.8 cm (small cobble)	6
12.8-25.6 cm (cobble)	7
> 25.6 cm (boulder)	8 ,
Bedrock	9

100 Pebble Count & Substrate Embeddedness

- Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.
- Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.
- Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0

	Diameter (cm)	E	2). 001	Diameter (cm)	E	T CITIE	Diameter (cm)	Е		iameter (cm)	Е
1	P.O		26	Vo-8		51	(1)		76	18.7	
2	8-0		27	67		52	78.7		77	14.3	
3	20.2		28	41		53	5.1		78	8.8	
4	14.1		29	10.9	-	54	4.5		79	10.1	Quita V
5	159		30	00	1	55	5.9		80	20.1	47
6	13.7		31	17.9		56	9.7		81	8.8	
7	19		32	9.2		57	8.8	tehsi	82	5.3	
8	14.6	-	33	29.1		58	6.5		83	15-1	
9	9.6		34	16.8		59	5.4	ABOM,	84	4.6	
10	2.5	0	35	13.4	1/4	60	14:1	3/4	85	17.6	
11	11.9		36	16-7-		61	7.8		86	7.6	
12	5-2		37	6.6		62	7.5		87	1.9	
13	6.4		38	14.8		63	9.6		88	9.3	
14	2.1		39	13.4		64	2.7		89	1.5	1
15	7.8		40	4.2	1/4	65	7.)	and the same	90	12.4	Yes
16	7.3		41	18.1	*	66	28.		91	9.3	
17	6.0		42	25.8		67	8.9	THE REAL PROPERTY.	92	13.1	1
18	11.6		43	8-3		68	2.5		93	9.8	
19	6.0		44	5.4		69	13.6		94	4.6	
20	14.7	0	45	14.7		70	13.6	0	95	6.3	1994
21	10.6		46	8-6		71	3.3		96	10.9	
22	18.5		47	15-4		72	12.4		97	194	1 1 1 1 1 1
23	2.4		48	(2.)		73	105		98	00	
24	11.3		49	5.2		74	7.1		99	80	
25	17.9		50	4.6	Y24	75	111		100	4.3	1/6

Field Crew: K.M. CB
Sampling Date: (DD/MM/YYYY) OS/10/2621
Sampling
SITE INSPECTION
Site Inspected by: K.McCallum
Communication Information
Hinerary left with contact person (include contact numbers)
Contact Person: C. Hughes Time checked-in: 9 12
Contact Person: Time checked-in: Time checked-in: Time checked-in: Time checked-in:
Phone number: (350) 423 -024 4
Vehicle Safety
Safety equipment (first aid, fire extinguisher, blanket, emergency kit in vehicle)
Equipment and chemicals safely secured for transport
Vehicle parked in safe location; pylons, hazard light, reflective vests if necessary
Notes:
Shore & Wading Safety
Wading Task Hazard Analysis read by all field staff
Wading Safe Work Procedures read by all field store
Instream hazards identified (i.e. log jams, deep pools at
Appropriate footwear, waders, wading belt
Delay used
Notes:

Site: ROIOE	Staff Gauge:
Date: 2021/16	Wetted Width:
Time: 15:00	Bankful Width: 18.6
Staff: KM, EM	Instrument ID: GloboFlowProlo
Photos: 1. Completed Field Sheet	3. Downstream
2. Upstream	4. Across (from left bank if possible)

	Distance (m)	Depth (m)	Velocity (m/s)	Notes
1	0	0.045	0	
2	0.4	0.057	0	
3	0.8	0.257	04	
4	1.2	0.322	0.9	
5	1.6	0.365	0.8	
6	2.0	0.414	1.3	
7	2.4	0.405	1.	
8	2.8	0.360	0.1	
9	3.2	0.315	CO	
10	3.6	0.262	0.5	
11	4.0	040.6	0.8	
12	4.4	0.355	0.9	
13	4.8	0.430	1-1	40.000
14	5.2	0.375	1.2	
15	5.6	0.264	1.8	

Continued from other side

COM	unuea from o	ther side		
16	7.30	0.154	0.3	Austria II
17	7.65	0,124	0.3	
18	8.00	0.116	0.4	
19	8.35	0.8	0.2	
20	8 70	0.125	0.1	
21	9.05	0.48	0.3	
22	9.40	0.58	0.1	
23	9.75	0:56	0.0	and the same of
24	10.00	0.4	0.0	BARRIDE
25	10.45	0.3	0.0	BANK
26	10.80			
27	Annual Control			
28		V4.0		
29				
30			331	
31				
2				200
3				
1	· · · · · · · · · · · · · · · · · · ·	and the second distance		

Comments:

Sampling Date: (DD/MM/YYYY) 06/10/2021	
☐ Occupational Health & Safety: Site Inspection Sheet completed	
PRIMARY SITE DATA	
CABIN Study Name: CBWQ-EIK Local Basin Name: Elk River	
River/Stream Name:Stream Order: (map scale 1:50,000)	
Agent and the second	
Select one: Test Site Potential Reference Site	
Geographical Description/Notes: She between Park Are + train bridge dis of grant ghase (Sombrowskia) Surrounding Land Use: (check those present) Information Source:	
☐ Forest ☐ Field/Pasture ☐ Agriculture ☐ Residential/Urban ☐ Logging ☐ Mining ☐ Commercial/Industrial ☐ Other ☐ Other ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	
Dominant Surrounding Land Use: (check one)	
Location Data	
Latitude: 49.495423N Longitude: - 115.066463W (DMS or DD)	
Elevation: GPS Datum: GRS80 (NAD83/WGS84) Other:	
Site Location Map Drawing Codde Cod	>a br

Field Crew: Kailcah McCallun + Franki Site Code: Colo Ol

Photos Field Sheet U Substrate (exposed)	Upstream	
REACH DATA (represe	sents 6 times bankfull width)	
1. Habitat Types: (check the	nose present) Rapids Straight run Pool/Back Eddy	
2. Canopy Coverage: (stand	ad in middle of stream and look up, check one)	
3. Macrophyte Coverage: (no	not algae or moss, check one) 1-25 %	
4. Streamside Vegetation: (c) ferns/grasses	check those present)	
5. Dominant Streamside Veg	getation: (check one)	
6. Periphyton Coverage on Si	Substrate: (benthic algae, not moss, check one)	
2 - Rocks are not	ot slippery, no obvious colour (thin layer < 0.5	
3 - Rocks have a	a noticeable slippery feel (footies :	
to dark brown a	ry slippery (algae can be removed with thumbnail), numerous large clumps of green (> 20 mm thick)	
Note: 1 through 5 represent cat	ategories entered into the	
BENTHIC MACROINVER	RTEBRATE DATA	
400 μm mesh Kick Net	riffle rapids straight run	
Person sampling Sampling time (i.e. 3 min.)	Preservative used: 99	
No. of sample jars	Sampled sieved on site ve	
Typical depth in kick area (cm)	If YES, debris collected for QAQC QAQC OR OF THE SWIRLING Method*:	

CABIN Field Sheet June 2012 lended 400 μm mesh kick net is used.

Sampling Date: (DD/MM/YYYY) 06/0/202							
Sampling Date. (DD/WWW)	111)						
WATER CHEMISTRY	DATA Time: 11:00	(24 hr clock) Time zone:	MT				
Air Temp: 12	(°C) Water Temp:	6 (°C) pH: 8-18	100 mm market				
Specific Conductance: 138.3 (µs/cm) DO: 10.68 (mg/L) Turbidity: -1.01 (NTU)							
Check if water samples were collected for the following analyses: TSS (Total Suspended Solids) Nitrogen (i.e. Total, Nitrate, Nitrite, Dissolved, and/or Ammonia) Phosphorus (Total, Ortho, and/or Dissolved) Major Ions (i.e. Alkalinity, Hardness, Chloride, and/or Sulphate)							
Note: Determining alkalinity is re	ecommended, as are other anal	yses, but not required for CABIN	N assessments.				
CHANNEL DATA							
Slope - Indicate how slope	was measured: (check one)	ero eros custabura Er					
Calculated from map Scale:							
Measurements	Upstream (U/S)	Downstream(D/S)	Calculation				
^a Top Hairline (T)							
^a Mid Hairline (ht) OR							
^b Height of rod							
^a Bottom Hairline (B)			116 +D6 =				
Distance (dis) OR			US _{dis} +DS _{dis} =				
^a T-B x 100	^a US _{dis} =T-B	^a DS _{dis} =T-B	DS _{ht} -US _{ht} =				
Change in height (Δht)							
Slope (Δht/total dis)			0.01				
US _{dis} DS _{dis}							

061.01							
				IAW VB	1615sales		
I side	(Inc	dicate where	e in samp	le reach, e	ex. d/s of kid	ck area)	
A - Bankfull Width: 17.7 (m) B - Wetted Stream Width: 12.9 (m)							
om water sui	rface to Bar	nkfull):	5	ino busis	(cm)	The dance	
				۸		nant	
		A A	-B-/				
1 V2 1 D2	V3 D3	V4 V5 D4 D5	/			mana C	
1	1	1				1.41.6.0.1.80	
		ons;		***	11911 112		
Velocity and Depth Check appropriate velocity measuring device and fill out the appropriate section in chart below. Distance from							
shore and depth are required regardless of method:							
		√[2(AD/10	0) * 9 811				
elocity Equat	ion (m/s) =	T SOFTER	No bulgas	sion chart f	or calculation		
	ion (m/s) = eller (Refer t	o specific me	eter conver			۱)	
elocity Equat -Price/Prope	ion (m/s) = eller (Refer t	o specific me	eter conver	TowPr	obe	inay C	
elocity Equat -Price/Prope	ion (m/s) = eller (Refer t :Birney □ S	o specific me	other F			AVG	
elocity Equat -Price/Prope	ion (m/s) = eller (Refer t :Birney □ S	o specific me	other F	TowPr	obe	inay C	
elocity Equat -Price/Prope	ion (m/s) = eller (Refer t :Birney □ S	o specific me	other F	TowPr	obe	inay C	
elocity Equat -Price/Prope	ion (m/s) = eller (Refer t :Birney □ S	o specific me	other F	TowPr	obe	inay C	
elocity Equat -Price/Prope	ion (m/s) = eller (Refer t :Birney □ S	o specific me	other F	TowPr	obe	inay C	
elocity Equat -Price/Prope	ion (m/s) = eller (Refer t :Birney □ S	o specific me	other F	TowPr	obe	inay C	
elocity Equat -Price/Prope	ion (m/s) = eller (Refer t :Birney □ S	o specific me	other F	TowPr	obe	inay C	
elocity Equat -Price/Prope	ion (m/s) = eller (Refer t :Birney □ S	o specific me	other F	TowPr	obe	inay C	
elocity Equat -Price/Prope	ion (m/s) = eller (Refer t :Birney □ S	o specific me	other F	TowPr	obe	inay C	
elocity Equat -Price/Prope	ion (m/s) = eller (Refer t :Birney □ S	o specific me	other F	TowPr	obe	inay C	
	om water sum of 5-6 equid stant location	Dem water surface to Bar V2 V3 D2 D3 D3 D3 D3 D3 D3 D3 D3 D4 D4 D	B - Wetted Street on water surface to Bankfull): The surface to Bankfull (Surface to B	B - Wetted Stream Width om water surface to Bankfull): 1	B - Wetted Stream Width:	B - Wetted Stream Width: 129 (m) om water surface to Bankfull): 35 (cm) 1	

Field Crew:

Sampling Date: (DD/MM/YYYY) _ 06/10/2021

SUBSTRATE DATA

Surrounding/Interstitial Material

Circle the substrate size category for the surrounding material.

Substrate Size Class	Category
Organic Cover	0
< 0.1 cm (fine sand, silt or clay)	1
0.1-0.2 cm (coarse sand)	(2)
0.2-1.6 cm (gravel)	3
1.6-3.2 cm (small pebble)	4
3.2-6.4 cm (large pebble)	5
6.4-12.8 cm (small cobble)	6
12.8-25.6 cm (cobble)	7
> 25.6 cm (boulder)	8
Bedrock	9

100 Pebble Count & Substrate Embeddedness

- Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.
- Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.
- Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0

	Diameter (cm)	Е		Diameter (cm)	Е		Diameter (cm)	E	[iameter (cm)	E
1	10.8	0	26	22.3		51	8.8		76	9.8	
2	62		27	1.5		52	23.0		77	0.9	
3	89		28	9.0		53	6.4		78	6,2	
4	71		29	6.4		54	110.8		79	33.4	m /.
5	5.2		30	15.1	1/4	55	7.0		80	6.0	3/4
6	69		31	5.2		56	10.1		81	38.5	
7	23.		32	11-4		57	0.3		82	9.7	
8	3-2		33	10.8		58	1.0		83	16.5	1 2 2
9	10.2		34	17.3	41360	59	13.4	6	84 85	15:11	
10	7.6	1/4	35	10,4		60	15,5	0	86	200	1
11	21.4		36	17.6		61	8.5		87	130	
12	4.9		37	9.5		62	1.5		88	13.8	
13	4.1		38	8.7		63	31.0		89	39	
14	6.7		39	16.9	16.	64	8:3		90	10 7	0
15	80		40	16.7	1/4	65	5.9		91	12.0	14
16	7.5		41	4.2		66	0.9	1 0000	92	89	
17	93		42	3.3		67	3.4		93	9.0	
18	305		43	8.0	-	68	181	1/.1	94	140	
19	19.1		44	18.6		69	10:0	NOT.	95	37	
20	17-1	14	45	18-8		70	3.3	79	96	0.3	
21	13.4		46	17.0	4	71	10.0		97	3.10	
22	5.6		47	77.9		72	14.5		98	13.0	N Section
23	6.9		48	11.0		73	1.9		99	7 0	
24	245		49	2.4		74	10.4		100	5,4	1/21
25	12.1		50	27.5	3/4)	75	111.9		100	13,7	1

Field Crew:
Sampling Date: (DD/MM/YYYY) 06/10/2021
Sampling Date: (DD/WWW 1111)
ATAO:
THE PROPERTY OF THE PROPERTY O
SITE INSPECTION
Site Inspected by: Kaikigh McCallum
and the Des As I
Communication Information
☐ Itinerary left with contact person (include contact numbers)
Contact Person: Chad Hudies Time checked-in: 10:30
Form of communication: ☐ radio ☐ cell ☐ satellite ☐ hotel/pay phone ☐ SPOT
Phone number: (20) 127 -6344
Vehicle Safety
Safety equipment (first aid, fire autimus)
Safety equipment (first aid, fire extinguisher, blanket, emergency kit in vehicle)
Equipment and chemicals safely secured for transport
Notes:
Notes:
Shore & Wading Safety
Wading Task Hazard Analysis read by all field staff
Wading Safe Work Procedures read by all field staff
Instream hazards identified (i.e. lead by all field staff
Instream hazards identified (i.e. log jams, deep pools, slippery rocks)
Appropriate footwear, waders, wading belt
□ Belay used
Notes:

Site:	ca.001	Staff Gauge:
Date:	06/10/2021	Wetted Width:
Time:	12:00	Bankful Width: 17.7
Staff:	KMAEM	Instrument ID: Flow proble
Photos	. 1. Completed Field Sheet	3. Downstream
Photos	2. Upstream	4. Across (from left bank if possible)

	Distance (m)	Depth (m)	Velocity (m/s)	Notes
1	4.10	0.19	0.1	Dan Line
2	4.60	0.195	0.3	
3	5.10	0.11.0	0.9	
4	5.60	0.125	0.3	
5	6.10	0.194	0.1	more que
6	6.60	0.187	0.0	(eddie)
7	7.10	0.931	0.0	11
8	7.6	0.260	0.2	
9	8.1	0.240	0.4	
10	8.6	0.184	0.9	rock
11	9.)	0.175	0.1	V/S
12	9.6	0.177	0,0	
13	10.1	0.30	0.3	
14	10.6	0.338	0.	
15	1111	0.130	0.3	

12.

Cont	inued from o	ther side		
16	6.6	31.0	0.8	
17	6.9	38.5	0.6	
18	7.2	32.5	0.5	
19	7.5	21.5	0.3	large rock
20	7.8	290-	0.3	11
21	18.1	31.0	0.5	
22	8.4	33,5	0.5	The State of the S
23	8.7	325	0.5	
24	19.0	25.0	0.4	
25	9.3	18.0	0.3	
26	9.6	14.5	0.3	
27	9.9	13.0	02	
28	10.2	15.5	0.2	
29	10.5	0	0	
30				
31			A 25 1	
32				
33				
34				
35				
Commen	ts:			

Sampling Date: (DD/MM/YYYY) 06/10/2021 Occupational Health & Safety: Site Inspection Sheet completed PRIMARY SITE DATA CABIN Study Name: CBWQ-CIW Local Basin Name: River/Stream Name: Con Creek Stream Order: (map scale 1:50,000) Select one: Test Site Potential Reference Site Geographical Description/Notes: Take Coal Cr. Rd to paiges Draw, parkets Information Source: _____ Surrounding Land Use: (check those present) ☐ Residential/Urban Forest Field/Pasture Agriculture 1 Other hunting ☐ Commercial/Industrial Logging ☐ Mining Information Source: US Dominant Surrounding Land Use: (check one) Residential/Urban ☐ Agriculture ☐ Forest ☐ Field/Pasture Other ☐ Commercial/Industrial Logging **Location Data** Latitude: 49.4577 N Longitude: - 114,88015 W (DMS of DD) GPS Datum: GRS80 (NAD83/WGS84) U Other: Elevation: 5702 (fast or mast) Tymas **Site Location Map Drawing** eroned by. Alders Note: Indicate north

Field Clem. Day 18 18 W. W. W. B. A. W. W. W. W. W. W. C. CO. CO. S.

Field Crew					
Sampling Date: (DD/MM/YYYY) 06/\0/207					
Photos Field Sheet Substrate (exposed) Downstret Downstret Downstret Downstret Downstret Downstret Downstret	am Across Site Aerial View				
REACH DATA (represents 6 times bankfull width)					
1. Habitat Types: (check those present) Riffle Rapids Straight run	Pool/Back Eddy				
2. Canopy Coverage: (stand in middle of stream and loc 0 % 1-25 % 26-50 %	ok up, check one) ☐ 51-75 % ☐ 76-100 %				
3. Macrophyte Coverage: (not algae or moss, check on 0 %	e)				
4. Streamside Vegetation: (check those present) ferns/grasses shrubs de	ciduous trees coniferous trees				
5. Dominant Streamside Vegetation: (check one) ☐ ferns/grasses ☐ shrubs ☐ de	ciduous trees				
6. Periphyton Coverage on Substrate: (benthic algae, n	ot moss, check one)				
 1 - Rocks are not slippery, no obvious colo 2 - Rocks are slightly slippery, yellow-brow 3 - Rocks have a noticeable slippery feel (falgae (1-5 mm thick) 					
4 - Rocks are very slippery (algae can be re	emoved with thumbnail), numerous large clumps of green				
to dark brown algae (5 mm -20 mm thick 5 - Rocks are mostly obscured by algal ma	k) t, extensive green, brown to black algal mass may have				
long strands (> 20 mm thick)					
Note: 1 through 5 represent categories entered into the CA	ABIN database.				
BENTHIC MACROINVERTEBRATE DATA					
Habitat sampled: (check one) ☐ riffle ☐ rapids ☐	straight run				
400 μm mesh Kick Net	Preservative used:				
Person sampling KM	Sampled sieved on site using "Bucket Swirling Method":				
Sampling time (i.e. 3 min.)	LI YES ANO				
No. of sample jars	If YES, debris collected for QAQC				
Typical depth in kick area (cm)					
Note: Indicate if a sampling method other than the					

Note: Indicate if a sampling method other than the recommended 400 µm mesh kick net is used.

eld Crew:	" EM	011 0						
Sampling Date: (DD/MM/Y	YYY) 05/10/2021	Site Code:	20103					
WATER CHEMISTRY DATA Time: 09:00 (24 hr clock) Time zone:								
Air Temp:								
Specific Conductance: 42-9 (µs/cm) DO: 10-65 (mg/L) Turbidity: 1-1-14 (NTU) (NTU)								
Check if water samples were	collected for the following a							
ISS (Total Suspended S	olids)	1.95	8 Ns/cm					
Nitrogen (i.e. Total, Nitrate Phosphorus (Total, Orthogonal)	te, Nitrite, Dissolved, and/or	Ammonia)						
Major lons (i.e. Alkalinity,		Sulphate) Other	EPH					
Note: Determining alkalinity is re								
CHANNEL DATA		Andrew Williams III	and which contracted the					
Slope - Indicate how slope	was measured: (check one							
Calculated from map Scale:	(Note: small scale man reco	mmended if field measurement is not	possible - i.e. 1:20,000).					
contour interval (vertical	distance)(n	n),						
slope = vertical distance	horizontal distance =	distance between contour intervals (horizontal distance) (m) slope = vertical distance/horizontal distance =						
OR								
OR								
Measured in field Circle device used and f	ill out table according to dev	rice: (cross upon						
Measured in field Circle device used and f	ill out table according to dev b. Hand Level & Measuring	rice: Pres year	Coloulation					
Measured in field Circle device used and f	ill out table according to dev b. Hand Level & Measuring Upstream (U/S)	rice: (cross upon	Calculation					
Measured in field Circle device used and f a. Survey Equipment Measurements aTop Hairline (T)	b. Hand Level & Measuring	rice: Pres year	Calculation					
Measured in field Circle device used and f a. Survey Equipment Measurements aTop Hairline (T) aMid Hairline (ht) OR	b. Hand Level & Measuring	rice: Pres year	Calculation					
Measured in field Circle device used and f a. Survey Equipment Measurements aTop Hairline (T) aMid Hairline (ht) OR bHeight of rod	b. Hand Level & Measuring	rice: Pres year	Calculation					
Measured in field Circle device used and f a. Survey Equipment Measurements a Top Hairline (T) a Mid Hairline (ht) OR b Height of rod a Bottom Hairline (B)	b. Hand Level & Measuring	rice: Pres year	Calculation US _{dis} +DS _{dis} =					
Measured in field Circle device used and fa. Survey Equipment Measurements aTop Hairline (T) aMid Hairline (ht) OR bHeight of rod aBottom Hairline (B) Distance (dis) OR	b. Hand Level & Measuring Upstream (U/S)	rice: Pres year	US _{dis} +DS _{dis} =					
Measured in field Circle device used and f a. Survey Equipment Measurements a Top Hairline (T) a Mid Hairline (ht) OR b Height of rod a Bottom Hairline (B) b Distance (dis) OR a T-B x 100	b. Hand Level & Measuring	Downstream(D/S)						
Measured in field Circle device used and f a. Survey Equipment Measurements aTop Hairline (T) aMid Hairline (ht) OR bHeight of rod aBottom Hairline (B) Distance (dis) OR aT-B x 100 Change in height (Δht)	b. Hand Level & Measuring Upstream (U/S)	Downstream(D/S)	US _{dis} +DS _{dis} =					
Measured in field Circle device used and f a. Survey Equipment Measurements a Top Hairline (T) a Mid Hairline (ht) OR b Height of rod a Bottom Hairline (B) b Distance (dis) OR a T-B x 100	b. Hand Level & Measuring Upstream (U/S)	Downstream(D/S)	US _{dis} +DS _{dis} = DS _{ht} -US _{ht} =					
Measured in field Circle device used and f a. Survey Equipment Measurements aTop Hairline (T) aMid Hairline (ht) OR bHeight of rod aBottom Hairline (B) Distance (dis) OR aT-B x 100 Change in height (Δht)	b. Hand Level & Measuring Upstream (U/S)	Downstream(D/S) aDSdis=T-B	US _{dis} +DS _{dis} = DS _{ht} -US _{ht} =					
Measured in field Circle device used and f a. Survey Equipment Measurements Top Hairline (T) Mid Hairline (ht) OR Height of rod Bottom Hairline (B) Distance (dis) OR T-B x 100 Change in height (Δht) Slope (Δht/total dis)	b. Hand Level & Measuring Upstream (U/S)	Downstream(D/S)	US _{dis} +DS _{dis} = DS _{ht} -US _{ht} =					
Measured in field Circle device used and f a. Survey Equipment Measurements Top Hairline (T) Mid Hairline (ht) OR Height of rod Bottom Hairline (B) Distance (dis) OR T-B x 100 Change in height (Δht) Slope (Δht/total dis)	b. Hand Level & Measuring Upstream (U/S) aUS _{dis} =T-B	Downstream(D/S) aDSdis=T-B	US _{dis} +DS _{dis} = DS _{ht} -US _{ht} =					

Field Crew: FM + KM				Site oo		and)	J b. Samplin
Sampling Date: (DD/MM/YYYY) 06/10/2021							
			h		AU YN		
Widths and Depth	@ flo	w do	da			av d/a of kia	de anna)
Location at site:		(lr	idicate whe	re in samp	le reach, e	ex. d/s of kid	ik area)
A - Bankfull Width: (m)			- Wetted St		n: d 1		
C - Bankfull-Wetted Depth (height from	n water sur	face to Ba	nkfull):	15	E SERVICE	(cm)	7, 881 %
ţc V1 D1	↑ V2 D2	V3 D3	V4 V5	В		MA AN AN	
Note: Wetted widths > 5 m, measure a minimum Wetted widths < 5 m, measure 3-4 equidis			ions;		A	IAULS	DIAM.
Check appropriate velocity measuring shore and depth are required regardles	ss of metho	fill out the	e appropriat			low. Distanc	e from
Velocity Head Rod (or ruler): Velo				Ash Interior			
☐ Rotary meters: Gurley/Price/Mini-					sion chart f	for calculation	1)
	1	2	3	4	5	6	AVG
Distance from Shore (m)							
Depth (D) (cm)							
Velocity Head Rod (ruler)							
Flowing water Depth (D ₁) (cm)							
Depth of Stagnation (D ₂) (cm)							
Change in depth (ΔD=D ₂ -D ₁) (cm)							
Rotary meter							
Revolutions							
Time (minimum 40 seconds)							
Direct Measurement or calculation							
Velocity (V) (m/s)							

eld Crew: Km + Em	
The second secon	Cita C-1

Sampling Date: (DD/MM/YYYY) _CS/10.1.207

SUBSTRATE DATA

Surrounding/Interstitial Material

Circle the substrate size category for the surrounding material.

Substrate Size Class	Category
Organic Cover	0
< 0.1 cm (fine sand, silt or clay)	6337
0.1-0.2 cm (coarse sand)	(2)
0.2-1.6 cm (gravel)	3
1.6-3.2 cm (small pebble)	4
3.2-6.4 cm (large pebble)	5
6.4-12.8 cm (small cobble)	6
12.8-25.6 cm (cobble)	7
> 25.6 cm (boulder)	8
Bedrock	9

100 Pebble Count & Substrate Embeddedness

- Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.
- Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.
- Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0

	Diameter (cm)	E		Diameter (cm)	E	THE ST	Diameter (cm)	E	Di	ameter (cm)	Е
1	1.4		26	12.0		51	37.3		76	23	
2	14.2		27	5.2		52	3.6		77	5.2	
3	9.3		28	11.8		53	9,1		78	6.3	
4	19.3		29	28.0		54	11.2		79	7.4	
5	37.0		30	12.5	1/21	55	11.9		80	8.1	14
6	29.0		31	21.6		56	8.5		81	3.4	
7	36.9		32	7.9		57	3.4	safeh	82	1.6	
8	39		33	16.)		58	1,0		83	265	
9	7.3		34	26.5	Second Second	59	4.9	A CRIE	84	210	
10	14.4	0	35	9.5		60	13.1		85	2.8	
11	7.6		36	7.5		61	3.2	1/2	86	2.7	
12	105		37	7.1		62	3.5		87	5.6	
13	3.4		38	7.4		63	20		88	5.0	
14	2.2		39	6.6		64	2.1		89	229	
15	130		40	9.8	0	65	2.6		90	50.0	3/4
16	11.0		41	1.7		66	3.9		91	3.9	
17	42		42	2.1		67	6.9	233	92	66	
18			43	19.8		68	18-6		93	9.1	
	7.6		44	7.8		69	5.6		94	3.5	
19	11.2	A	45	9.4		70	1.4	0	95	11.2	
20	2.8	0	46	4.4		71	21.5		96	501	
21	15.2					72	14.2		97	8.6	
22	128		47	2.2		73	7.6		98	4.8	
23	9.9		48	16.8					99	4.4	
24	8.6		49	29.2	23.1	74	3,4		100	14.5	1/2
25	2.8		50	10.8	94	75	4.0		100	14.3	

Site Inspected by:
Site Inspected by:
Site Inspected by:
Site Inspected by:
Communication Information Itinerary left with contact person (include contact numbers) Contact Person:
Contact Person:
Contact Person:
Form of communication: adio atellite hotel/pay phone SPOT Phone number: (300) 223 630 Vehicle Safety Safety equipment (first aid, fire extinguisher, blanket, emergency kit in vehicle) Equipment and chemicals safely secured for transport Vehicle parked in safe location; pylons, hazard light, reflective vests if necessary
Safety equipment (first aid, fire extinguisher, blanket, emergency kit in vehicle) Equipment and chemicals safely secured for transport Vehicle parked in safe location; pylons, hazard light, reflective vests if necessary
Equipment and chemicals safely secured for transport Vehicle parked in safe location; pylons, hazard light, reflective vests if necessary
Equipment and chemicals safely secured for transport Vehicle parked in safe location; pylons, hazard light, reflective vests if necessary
Vehicle parked in safe location; pylons, hazard light, reflective vests if necessary Notes:
Notes:
Shore & Wading Safety
Wading Task Hazard Analysis read by all field staff
Wading Safe Work Procedures read by all field staff
☐ Instream hazards identified (i.e. log jams, deep pools, slippery rocks) ☐ PFD worn
Appropriate footwear, waders, wading belt
☐ Belay used
used a second se

Velocimeter Measurement Field Sheet

2.46

Site: COLOGS	Staff Gauge:
Date: 06/10/7021	Wetted Width: 2.46
Time: 09:30	Bankful Width: 4.6
Staff: KM + EM	Instrument ID: Globs Flow Prot
Photos: 1. Completed Field Sheet	3. Downstream
2. Upstream	4. Across (from left bank if possible)

		and the second of the second o		1
	Distance (m)	Depth (m)	Velocity (m/s)	Notes
1	1.3	6.8	0	
2	1.4	11.5	0	
3	1.5	12.5	0	
4	1.6	15.1	0	
5	1.7	2.5	0	
6	1.8	No	0	
7	1.9	70	0.1	
8	20	12.6	0.2	
9	2.1	17.3	0.2	
10	2.2	12.8	0.3	
11	2.3	14.8	0.3	
12	2,4	7.7	0.2	
13	2.5	12.6	0.1	
14	2.6	13.1	0.1	
15	2.7	6.4	0.2	

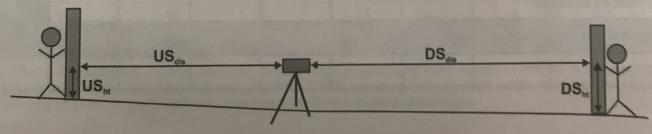
Corrent			
16480	50.4	0.7	9
17510	51.6	0.7	
18 540	52.1	0.7	
19570	50.9	0.5	0
20606	41,10	0.4	
21630	47.8	0.4	
22660	43.0	0.5	9
23690	36.5	0.5	0
24720	30.1	0.6	
25750	24.5	0.6	
26780	29.6	0.3	13 1 02
27810	26.5	0.2	
28840	16:4	0,1	
29870	5.9	0.0	
30 900	1.5	0.6	
31910	0	0.0	
		0.0	
32			
33			
34			
35			

☐ Occupa	ational Health	a & Safety:	Site Inspect	ion Sheet	completed	E 100/80	out = Lit
PRIMARY	SITE DATA		1010	Bour Cy.			
CABIN Study	Name: 8 CBI	VO-ECK	L	ocal Basin N	ame: LIZARD	near .	ELER RIV
River/Stream	Name: LIZA	no creek	s	tream Order	(map scale 1:50,	(000) *)
Select one:	Test Site 🗆	Potential Ref	erence Site		to to albition of two		
~100m		From to			e 1 Bridge,	CET UP S	THE IS
Forest	Field/Past	ure L	Agriculture		Residentia Other Re	I/Urban	real
Forest					ource:		
_ Logging					Other		
ocation Datitude: 49	Mining Ata 490919N Lo	ongitude: - <u>//</u>	Commercial/Ir	ndustrial V (DMS or	Other	ens existe and a Replace and a	
ocation Datatitude: 49	Mining Ata 490919N Lo 259 (fast) or m	engitude: - <u>//</u>	Commercial/Ir	V (DMS or GRS80 (NAD	Other DD) 83/WGS84)	ther:	
ocation Datatitude: 49	Mining Ata 490919N Lo 259 (fast) or m	engitude: - <u>//</u>	Commercial/Ir	V (DMS or GRS80 (NAD	□ Other	ther:	
ocation Datatitude: 49	Mining Ata 490919N Lo 259 (fast) or m	engitude: - <u>//</u>	Commercial/Ir	V (DMS or GRS80 (NAD	□ Other	ther:	41
evation Paratitude: 49 devation: 43 devation	Mining Ata 490919N Lo 259 (fast) or m	engitude: - <u>//</u>	Commercial/Ir	V (DMS or GRS80 (NAD	□ Other	ther:	over

CHRIL BULL

MATVEEU

WALLERUM M'CALLUM, EVERAN	curis Buil
Field Crew: CMO MENES, KAILERUM M'CALLUM, EVERAN Sampling Date: (DD/MM/YYYY) 63/10/2021	0 0
Photos ☐ Upstream ☐ Downstread ☐ Substrate (exposed) ☐ Substrate (aquatic	Other T F E
REACH DATA (represents 6 times bankfull width)	
1. Habitat Types: (check those present) Rapids Straight rur	
2. Canopy Coverage: (stand in middle of stream and location of the control of the	ok up, check one) ☐ 51-75 % ☐ 76-100 %
3. Macrophyte Coverage: (not algae or moss, check on 0 % 1-25 % 26-50 %	e)
4. Streamside Vegetation: (check those present) ferns/grasses shrubs de	ociduous trees Coniferous trees
5. Dominant Streamside Vegetation: (check one) ✓ ferns/grasses □ shrubs □ de	eciduous trees
6. Periphyton Coverage on Substrate: (benthic algae, I	not moss, check one)
 algae (1-5 mm thick) 4 - Rocks are very slippery (algae can be to dark brown algae (5 mm -20 mm thick) 	removed with thumbnail), numerous large clumps of green
Note: 1 through 5 represent categories entered into the C	CABIN database.
BENTHIC MACROINVERTEBRATE DATA	
Habitat sampled: (check one) ☐ riffle ☐ rapids ☐	straight run
400 μm mesh Kick Net	Preservative used:
Person sampling C. Bush	Sampled sieved on site using "Bucket Swirling Method":
Sampling time (i.e. 3 min.)	☐ YES ☐ NO If YES, debris collected for QAQC ☐
No. of sample jars Typical depth in kick area (cm)	- Lo, debits collected for QAQC L1
Typical deput itt Alex alea (CIII)	


Note: Indicate if a sampling method other than the recommended 400 μm mesh kick net is used.

ling Date: (DD/MM/Y	YYY) 03/10/2021			
NATER CHEMISTRY	ATA Time: 0930	_ (24 hr clock)	Time zone: MS	7
Air Temp:	(°C) Water Temp:7	(°C)	pH: 8,12	with the residence
Specific Conductance: 47 Conductance: 47 Check if water samples were	4.1)		Turbidity: 0:33	
TSS (Total Suspended S				
Nitrogen (i.e. Total, Nitrat	e, Nitrite, Dissolved, and/o	Ammonia)		Service Servic
Phosphorus (Total, Ortho				
Major lons (i.e. Alkalinity,	Hardness, Chloride, and/o	r Sulphate)	Other E. P. H	
Note: Determining alkalinity is re	commended as are other an	alvees but not requ	ired for CARIN assess	ments
contour interval (vertical distance between contour slope = vertical distance/ OR Measured in field Circle device used and file	(Note: small scale map reco	mmended if field meann), nce)		- i.e. 1:20,000).
Measurements	Upstream (U/S)	Downstrea	m(D/S)	Calculation
^a Top Hairline (T)				
^a Mid Hairline (ht) OR ^b Height of rod	1.12	2.23		
^a Bottom Hairline (B)	and the same of the same of the		-	
B				

TVEGV, CARCH USA SITE CODE:

Measurements	Upstream (U/S)	Downstream(D/S)	Calculation
^a Top Hairline (T)			
^a Mid Hairline (ht) OR ^b Height of rod	1.12	2.23	
^a Bottom Hairline (B)			
^b Distance (dis) OR	30m	30 m	US _{dis} +DS _{dis} =
^a T-B x 100	^a US _{dis} =T-B	^a DS _{dis} =T-B	60m
Change in height (Δht)			DS _{ht} -US _{ht} =
Slope (Δht/total dis)			.0185 (1.85%)
			7

Sampling Date: (DD/MM/YYYY) th 03/10/2021

Widths and Depth	and plant the		A 1200	
Location at site: UK of Wick	-net site	(Indicate whe	re in sample read	ch, ex. d/s of kick area)
A - Bankfull Width: (m))	B - Wetted St	ream Width:	(m)
C - Bankfull-Wetted Depth (height f	rom water surface	e to Bankfull):	15	(cm)
tc	† † †	73 V4 V5 13 D4 D5	-В-	NO AND TO PROPERTY OF A SANCE.
	D1 D2 D	3 D4 D5	/	
Note: Wetted widths > 5 m, measure a minimul Wetted widths < 5 m, measure 3-4 equi	um of 5-6 equidistar distant locations.	nt locations;		
Velocity and Depth Check appropriate velocity measuring shore and depth are required regard	ng device and fill	out the appropriate	ed flow 8	below. Distance from
☐ Velocity Head Rod (or ruler): \		$(m/s) = \sqrt{[2(\Delta D/1)]}$	00) * 9.81]	nos manos extensos
Rotary meters: Gurley/Price/Mil				art for calculation)
Direct velocity measurements	: □ Marsh-McBirr	ney □ Sontek or ☑	Other GO	flow prok
	1	2 3	4 5	6 AVG
Distance from Shore (m)				
Depth (D) (cm)				
/elocity Head Rod (ruler)				
Flowing water Depth (D ₁) (cm)				
Depth of Stagnation (D₂) (cm)				
Change in depth (ΔD=D ₂ -D ₁) (cm)			AND DESCRIPTION OF THE PERSON NAMED IN COLUMN 1	
		9.3	LOUP I	
otary meter	1			
Revolutions				

Direct Measurement or calculation

Velocity (V) (m/s)

(H) (B) (E) Site Code: [1200]

ing Date: (DD/MM/YYYY) 03/10/202/

SUBSTRATE DATA

Surrounding/Interstitial Material

Circle the substrate size category for the surrounding material.

Substrate Size Class	Category
Organic Cover	0
< 0.1 cm (fine sand, silt or clay)	(1)
0.1-0.2 cm (coarse sand)	2
0.2-1.6 cm (gravel)	3
1.6-3.2 cm (small pebble)	4
3.2-6.4 cm (large pebble)	5
6.4-12.8 cm (small cobble)	6
12.8-25.6 cm (cobble)	7
> 25.6 cm (boulder)	8
Bedrock	9

100 Pebble Count & Substrate Embeddedness

- Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.
- Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.
- Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0

	Diameter (cm)	Е		Diameter (cm)	Е		Diameter (cm)	E	[Diameter (cm)	E
1	24.5	X	26	44.2	X	51	5.4	×	76	15.0	×
2	40	×	27	24.5	K	52	23.3	×	77	14.2	X
3	6.5	X	28	8.5	K	53	20.2	×	78	1.6	X
4	29.0	X	29	11.4	7	54	10.4	x	79	7.8	×
5	D2.8	x	30	9.3	0	55	111	×	80	400 IS.1	75%
6	240	X	31	19.0	X	56	10.2	X	81	8.0	x
7	9.5	X	32	9.8	×	57	3.3	×	82	12.4	7
8	3.2	X	33	12.6	×	58	5.0	×	83	12.6	X
9	6.5	+	34	7.5	X	59	ja.6	>	84	4.9	×
10	13.5	25%	35	6.7	×	60	11.4	25%	85	11.3	×
11	6.8	X	36	7.7	x	61	6.5	x	86	6.3	K
12	10.5	X	37	9.3	X	62	9.5	x	87	11.0	×
13	11.5	X	38	13.5	x	63	28.2	×	88	10.0	×
14	9.5	X	39	16.5	×	64	2.8	*	89	8.8	×
15	13.0	X	40	9.5	.25	65	27.)	×	90	12.5	75%
16	12.2	×	41	7.0	X	66	19.8	×	91	12.9	×
17	8.5	X	42 -	7.5	X	67	S	X	92	5.6	×
18	12.0	X	43	7.4	×	68	69.1	X	93	13.2	×
19	14,3	×	44	4.4	x	69	26	×	94	38.4	×
20	7.7	0	45	45.3	X	70	1.1	13	95	12.5	X
21	5.0	X	46	10.7	×	71	36.3	X	96	19.9	×
22	8.3	*	47	8.4	K	72	5.4	X	97	8.7	X
23	12.4	×	48	14.0	×	73	30.0	×	98	2.5	×
24	8.4	X	49	11.8	7	74	12.2	X	99	25,6	×
25	00	X	50	100	50%	75	5.6	*	100	2:0	0
23	8,1	1	00	10.)	001	-	3.0				

Field Crew: 41, 101, 2021
Sampling Date: (DD/MM/YYYY) 03/10/2021
THE THE PROPERTY OF THE PARTY O
SITE INSPECTION
Site Inspected by: C. McCallum
Communication Information
□ Itinerary left with contact person (include contact numbers) N/A - 4 people on site
Contact Person: Time checked-in:
Form of communication: radio cell satellite hotel/pay phone SPOT
Phone number: ()
Vehicle Safety
Safety equipment (first aid, fire extinguisher, blanket, emergency kit in vehicle)
Equipment and chemicals safely secured for transport
Vehicle parked in safe location; pylons, hazard light, reflective vests if necessary
Notes:
Shore & Wading Safety
Wading Task Hazard Analysis read by all field staff
Wading Safe Work Procedures read by all field staff
☐ Instream hazards identified (i.e. log jams, deep pools, slippery rocks)
□ PFD worn
Appropriate footwear, waders, wading belt
□ Belay used
Notes:
voice,

Site:	
Date: 112-001	Staff Gauge:
Time 2021/10/3	Wetted Widtle
1400	Bankful Width 880
Photos: 1. Completed Field Sheet	Instrument ID: Global Flow proba
2. Upstream	4. Across (from left bank if possible)

	Distance (m)	Depth (m)	Velocity (m/s)	Notes
12.05	2.009	0.15	0	C Bank
2	2.40	0.87	0.4	
3	2.75	0.193	0.1	
4	3.10	0.178	0.2	ann
5	3.45	0.224	0.2	
6	3.80	0.219	0.7	
7	4.15	0.257	6.2	
3	4.50	0.264	0.2	
	4.85	0.171	6.3	
0	5.20	0.238	0.4	
1	5.55	0.225	0.4	
	5.90	0.212	0.4	
2		0.231	0.4	
3	6.25		0.4	
1	6.60	0.260	0.3	
5	6.95	0.235	0.3	

anih

3 6

PE

qF

Occupational Health & Sa	afety: Site Inspection Sheet completed
PRIMARY SITE DATA	
CABIN Study Name:	
River/Stream Name: LIZARO CR	Stream Order: (map scale 1:50,000)
Select one: Test Site Potenti	
Geographical Description/No	otes:
	wyon comes/DAY PARKENS, WALL UP STREAM BLOOKS TRAK
	CAM OF BANK RESTORATION . of KONT BRIDGE
Surrounding Land Use: (check those	e present) Information Source: / vitual Residential/Urban
☐ Logging ☐ Mining	☐ Agriculture ☐ Residential/Urban ☐ Commercial/Industrial ☐ Other Recognise
	check one) Information Source:
Forest Field/Pasture	Agriculture Residential/Urban
Logging Mining	☐ Commercial/Industrial ☐ Other
	Commercial/industrial
instruction in the state of the	min 6.0 > hadel ninth suppose supposes and physical three legals of Ld
ocation Data	1 1 - Flories are not allopent, nel obvicus colous (little lever < 0.5 mm
ocation Data atitude: <u>49 48 55 76</u> N Longitud	de: - <u>//5 09 44 81</u> W (DMS or DD)
ocation Data atitude: 49 48 56 76 N Longitud levation: 3356 (fast or mast)	1 1 - Flories are not allopent, nel obvicus colous (little lever < 0.5 mm
atitude: 49 48 56 76 N Longitud levation: 3356 (fast or mast)	de: - //5 09 44 8/ W (DMS or DD) GPS Datum: GRS80 (NAD83/WGS84) Other:
atitude: 49 48 56 76 N Longitud levation: 3356 (fast or mast)	de: - <u>//5 09 44 81</u> W (DMS or DD)
atitude: 49 48 56 76 N Longitud levation: 3356 (fast or mast)	de: - 115 09 44 81 W (DMS or DD) GPS Datum: GRS80 (NAD83/WGS84) Other:
atitude: 49 48 56 76 N Longitud (fast or mast)	de: - 115 09 44 81 W (DMS or DD) GPS Datum: GRS80 (NAD83/WGS84) Other:
atitude: 49 48 56 76 N Longitude: 49 48 56 76	de: - 115 09 44 81 W (DMS or DD) GPS Datum: GRS80 (NAD83/WGS84) Other:
atitude: 49 48 56 76 N Longitude: 49 48 56 76	de: - 115-09 YY 81 W (DMS or DD) GPS Datum: GRS80 (NAD83/WGS84) Other:
atitude: 49 48 56 76 N Longitud levation: 3356 (fast or mast) 10 22 mast	de: - 1/5 09 44 81 W (DMS or DD) GPS Datum: GRS80 (NAD83/WGS84) Other: SURUBS FLOW
atitude: 49 48 56 76 N Longitud levation: 3356 (fast or mast) 10 22 mast	de: - 115-09 YY 81 W (DMS or DD) GPS Datum: GRS80 (NAD83/WGS84) Other:
atitude: 49 48 56 76 N Longitud levation: 3356 (fast or mast) 10 22 mast	de: - 115 09 44 81 W (DMS or DD) GPS Datum: GRS80 (NAD83/WGS84) Other: SURUBS FLOW
atitude: 49 48 56 76 N Longitud levation: 3356 (fast or mast) 10 2 2 mast ite Location Map Drawing	de: - 115-09 YY 81 W (DMS or DD) GPS Datum: GRS80 (NAD83/WGS84) Other: SURUBS FLOW
atitude: 49 48 56 76 N Longitud levation: 3356 (fast or mast) 10 2 2 mast ite Location Map Drawing	de: - 115 09 44 81 W (DMS or DD) GPS Datum: GRS80 (NAD83/WGS84) Other: SURUBS WQ NICH NET dischar
atitude: 49 48 56 76 N Longitude: 49 48 56 76	de: - 115 09 44 81 W (DMS or DD) GPS Datum: GRS80 (NAD83/WGS84) Other: SURUBS WQ NICH NET dischar

Field Crew:

Field Crew: C. Action, N. M. Court, E Marvers. Ch.	Site Code: C/2-903
Sampling Date: (DD/MM/YYYY) 03/10/2021	
Photos ☐ Field Sheet ☐ Upstream ☐ Downstre ☐ Substrate (exposed) ☐ Substrate (aquation	
REACH DATA (represents 6 times bankfull width)	
1. Habitat Types: (check those present) ☐ Riffle ☐ Rapids ☐ Straight ru	n Pool/Back Eddy
2. Canopy Coverage: (stand in middle of stream and lo	ok up, check one) □ 51-75 % □ 76-100 %
3. Macrophyte Coverage: (not algae or moss, check on 0 %	e)
4. Streamside Vegetation: (check those present) ferns/grasses shrubs de	ciduous trees Coniferous trees
5. Dominant Streamside Vegetation: <i>(check one)</i> ☐ ferns/grasses ☐ shrubs ☐ de	ciduous trees
6. Periphyton Coverage on Substrate: (benthic algae, r	not moss, check one)
□ 1 - Rocks are not slippery, no obvious colo	our (thin layer < 0.5 mm thick)
2 - Rocks are slightly slippery, yellow-brow	n to light green colour (0.5-1 mm thick)
	footing is slippery), with patches of thicker green to brown
algae (1-5 mm thick) 4 - Rocks are very slippery (algae can be r	removed with thumbnail), numerous large clumps of green
to dark brown algae (5 mm -20 mm thic	k)
5 - Rocks are mostly obscured by algal ma long strands (> 20 mm thick)	at, extensive green, brown to black algal mass may have
Note: 1 through 5 represent categories entered into the C	ARIN database
	ADITY database.
BENTHIC MACROINVERTEBRATE DATA	
Habitat sampled: (check one) ☐ riffle ☐ rapids ☐	straight run
400 μm mesh Kick Net	Preservative used:/so - Prop.
Person sampling CHRIS BUSH	Sampled sieved on site using "Bucket Swirling Method":
Sampling time (i.e. 3 min.)	YES NO
No. of sample jars	If YES, debris collected for QAQC
Typical depth in kick area (cm)	

Note: Indicate if a sampling method other than the recommended 400 μm mesh kick net is used.

Grew: Emans, Kartanan, E. Mareev. C. Busul Site Code: 212-003									
mpling Date: (DD/MM/YYYY) 03/10/2021									
npling Date. (DD/WWW/111	11 - 37,797,2001								
TER CHEMISTRY DAT	TA Time: /330 (24 hr clock) Time zone:	mor						
Temp: (°C) Water Temp: 8 3 (°C) pH: 8 2 f									
ecific Conductance: 478.4 (µs/cm) DO: 10.77 (mg/L) Turbidity: -6.69 (NTU)									
567101	ECTUATION .	10 /17	(one)						
eck if water samples were co		alyses:	Hider onnersannes						
Nitrogen (i.e. Total, Nitrate,	Nitrite, Dissolved, and/or A	mmonia)	7						
Phosphorus (Total, Ortho, a	and/or Dissolved)	D'other M	ems, EPH						
Major Ions (i.e. Alkalinity, H									
ote: Determining alkalinity is reco	ommended, as are other analy	yses, but not required for CABIN	assessinorie.						
HANNEL DATA									
	was measured: (check one)								
Slope - Indicate how slope v	vas measured. (onder eme)								
Calculated from map	(Note: small scale map recon	nmended if field measurement is not	possible - i.e. 1:20,000).						
	distance) (mr intervals (horizontal distance)								
slope = vertical distance/l	norizontal distance =	Longitude of the contract of t							
OR									
☐ Measured in field	l out table according to dev	ice:							
a. Survey Equipment	hand Level & Measuring	Tape	Calculation						
Measurements	Upstream (U/S)	Downstream(D/S)	Calculation						
^a Top Hairline (T)									
^a Mid Hairline (ht) OR		, 0.5	20.45						
^b Height of rod	1.40	1.85							
^a Bottom Hairline (B)	50.4	20	US _{dis} +DS _{dis} =						
^b Distance (dis) OR	28.4	30	58.4						
^a T-B x 100	^a US _{dis} =T-B	^a DS _{dis} =T-B	DSht-USht= 0.45						
Change in height (Δht)			0,0077						
Slope (Δht/total dis)									
			0.77%						
			THE RESERVE OF THE PARTY OF THE						

DS_{dis}

US_{dis}

US_{ht}

(Colon)

DS_{ht}

Site Code: 11 2003

Sampling Date: (DD/MM/YYYY) 63/10/2021

Widths and Depth Location at site:)
V1 V2 V3 V4 V5 D1 D2 D3 D4 D5	meacon A L antigrama E moltare A E amoteo atol
Wetted widths > 5 m, measure a minimum of 5-6 equidistant locations; Wetted widths < 5 m, measure 3-4 equidistant locations.	anati

Velocity	and	Depth
----------	-----	-------

Check appropriate velocity measuring device and fill out the appropriate section in chart below. Distance from shore and depth are required regardless of method:

□ Velocity Head Rod (or ruler): Velocity Equation (m/s) = $\sqrt{[2(\Delta D/100) * 9.81]}$

Rotary meters: Gurley/Price/Mini-Price/Propeller (Refer to specific meter conversion chart for calculation)

□ Direct velocity measurements: □ Marsh-McBirney □ Sontek or ☒ Other ☐ Gobal Water

	1	2	3	4			
Distance from Shore (m)	O DESCRIPTION				5	6	AVG
Depth (D) (cm)							
Velocity Head Rod (ruler)				1			
Flowing water Depth (D ₁) (cm)			1.0				
Depth of Stagnation (D2) (cm)	11.22	/	in				
Change in depth (ΔD=D ₂ -D ₁) (cm)		104	2	8.		BOLLE	
Rotary meter		U					
Revolutions	16	16					
Time (minimum 40 seconds)	0	C					
Direct Measurement or calculation							
Velocity (V) (m/s)							
			The same				

Site Code: _____

sampling Date: (DD/MM/YYYY) 03/10/2021

SUBSTRATE DATA

Surrounding/Interstitial Material

Circle the substrate size category for the surrounding material.

Substrate Size Class	Category
Organic Cover	0
< 0.1 cm (fine sand, silt or clay)	1
0.1-0.2 cm (coarse sand)	(2)
0.2-1.6 cm (gravel)	3
1.6-3.2 cm (small pebble)	4
3.2-6.4 cm (large pebble)	5
6.4-12.8 cm (small cobble)	6
12.8-25.6 cm (cobble)	7
> 25.6 cm (boulder)	8
Bedrock	9

100 Pebble Count & Substrate Embeddedness

- Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.
- Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.
- Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0

	Diameter (cm)	E		Diameter (cm)	Е	NAME OF TAXABLE PARTY.	Diameter (cm)	Е		Diameter (cm)	Е
1	2.0	×	26	4.1	/	51	1.6	/	76	4.1	/
2	3.1	V	27	1.4	/	52	6.8	/	77	7.5	_
3	6.3	×	28	1.9	/	53	4.2	/	78	1.7	-
4	7.4	×	29	4	/	54	2.4	1	79	5.7	1
5	1.6	X	30	3.1	257.	55	2.8	1	80	18.5	75%
6	5.2	X	31	6.8	-	56	1.6	1	81	2,4	-
7	3.4	X	32	3.7	/	57	1.4	1	82	7.5	/
8	1.6	X	33	4.5	/	58	1.6	/	83	96 5.3	/
9	6.7	×	34	2.9	1	59	5.9	/	84	3.96	/
10	9.5	0	35	5.4	-	60	9.1	0.75	85	3.8	-
11	4.2	1	36	113	/	61	5.5	-	86	10.4	-
12	8.2	×	37	3.7	1	62	5.1	-	87	4.0	-
13	7.1	×.	38	8.8	/	63	0.9	/	88	5.0	1
14	9.1	X	39	6.4	-	64	2	-	89	0.6	1
15	1.5	X	40	6.8	251.	65	5.2	1	90	4.1	0
16	1.4	×	41	4.7	/	66	5.1		91	3.7	/
17	1.5	-	42	7.9	/	67	7.8	1	92	4.2	1
18	6.2	-	43	5.4		68	11.1	1	93	3.4	1
19	6.6	-	44	3.7	1	69	3.2	/	94	5.5	1
20	6	0	45	3.2	/	70	11.6	25.1.	95	3.3	/
21	5.6	1	46	2.8	-	71	6.1	/	96	2.4	1
22	4.8	1	47	9.9	/	72	3.7		97	1.8	-
23	4.3	1	48	9.1	/	73	5	/	98	6.1	1
24	3.5	1	49	5.9	/	74	3.4	11	99	2.6	1
25	5.1	/	50	3.1	100	75	6.2	/	100	5.6	0

Field Crew: CH, VCM, CR, EV

Sampling Date: (DD/MM/YYYY) 03/10/2021

SITE INSPECTION	S	IT	E		N	S	P	E	C	T		0		V	
-----------------	---	----	---	--	---	---	---	---	---	---	--	---	--	---	--

Site Inspected by: KM, CH, CB, EV
Communication Information
Itinerary left with contact person (include contact numbers)
Contact Person: Form of communication: radio cell satellite hotel/pay phone SPOT Phone number: ()
Vehicle Safety
Safety equipment (first aid, fire extinguisher, blanket, emergency kit in vehicle)
Equipment and chemicals safely secured for transport
Vehicle parked in safe location; pylons, hazard light, reflective vests if necessary
Notes:
Shore & Wading Safety
☑ Wading Task Hazard Analysis read by all field staff
☑ Wading Safe Work Procedures read by all field staff
☐ Instream hazards identified (i.e. log jams, deep pools, slippery rocks)
□ PFD worn
Appropriate footwear, waders, wading belt
□ Belay used—
Notes:

neter Measurement Field Sheet

NET.

Site: <u>112-003</u>	Staff Gauge:
Date: 2021 10 03	Wetted Width: 44 65 m
Time: 1330	Bankful Width: 40cm 7 m
Staff: Evgeni & Chael	Instrument ID: Global water
Photos: 1. Completed Field Sheet	3. Downstream
2. Upstream	4. Across (from left bank if possible)

	Distance (m)	Depth (m)	Velocity (m/s)	Notes
11.15	0.15	0.04	0	
21,30	0.30	0,068	0	
31.45	0.45	0.065	0.2	
420	10.6	0.092	0,3	
52.5	0.35	0.029	6.3	
6	0,9	0.129	0.3	
7	1.05	0.133	0.3	
8	12	0.160	0.4	
9	1.35	0.196	0.4	
10	1.5	0.232	0.4	
11	1.65	6.18	0,4	
12	1.80	0.22)	0.2	
13	1.98	6.232	0.5	
14	2.10	0.233	0.5	
15	2.25	0.235	0.5	

Continued from other side

Conti	nued from of	ther side		
16	2.40	0.317	0.5	
17	2.55	0.326	0.5	
18	2.7	0.362	0.5	
19	2.85	0.353	0.5	
20	3.0	0.320	0.6	and a state of the state of the state of
21	3.15	0.285	0.5	
22	3.30	0.215	0.5	
23	3.45	0.257	0.5	
24	3.60	0.233	0.5	
25	3.75	0.20	0.4	
26	3.90	0.144	0.4	and the same of th
27	量 4.55	0.145	0.4	
28	45.20	0.11	0.5	
29	45.35	0.101	0.2	
30	4.5	0.090	0.2	Manager and
31	4.65	0.000	0	
32	4			
33	TA ME			
34			1	
35				

01

9.

8

Comments.	Carlotte St. St. Carlotte St. C		

Sampling Date: (DD/MM/YYYY) 04/10 / 2021
Occupational Health & Safety: Site Inspection Sheet completed
PRIMARY SITE DATA
CABIN Study Name:Local Basin Name:
River/Stream Name:Stream Order: (map scale 1:50,000)
Select one: ☐ Test Site ☐ Potential Reference Site
Geographical Description/Notes: Take Morrisky forest Service Rol to language turn right and unnamed lagging rol just before bridge over morrisky of Drive to railway to park, walk als so we to ste
Surrounding Land Use: (check those present) Information Source: Residential/Urban Logging Mining Commercial/Industrial Other
Dominant Surrounding Land Use: (check one) Information Source: ☐ Forest ☐ Field/Pasture ☐ Agriculture ☐ Residential/Urban ☐ Logging ☐ Mining ☐ Commercial/Industrial ☐ Other
ocation Data (Abute mm 1-8.9) suctoo needs trigl of award-wolley, visquila vistalle one stands of Ed
atitude: 493886N Longitude: - NC. 60088 W (DMS of DD)
GPS Datum: GRS80 (NAD83/WGS84) Other:
Site Location Map Drawing
WO THAT THE THE THE THE THE THE THE THE THE TH
The fishing the COXO =

Mathew Site Code: MOROD J

Field Crew: Killingh McCell, Engain M	Site Code:
Field Crew: Kaleigh McCall, Cognition	
Sampling Date: (DD/MM/YYYY) 04/10/2021	
Sampling Date. (DD/MILL)	Aerial View
Photos Downstream	Across Site
Field Sheet Upstream Substrate (aquatic)	Other
Substrate (exposed)	
REACH DATA (represents 6 times bankfull width)	
Habitat Types: (check those present) Riffle □ Rapids □ Straight run	Pool/Back Eddy
2. Canopy Coverage: (stand in middle of stream and look up	, check one) 51-75 %
L 0% LA 1-25 % L 20 00 %	51-75 %
4. Streamside Vegetation: (check those present) ferns/grasses Shrubs decidud	ous trees Coniferous trees
5. Dominant Streamside Vegetation: (check one) ☐ ferns/grasses ☐ shrubs ☐ decidu	
6. Periphyton Coverage on Substrate: (benthic algae, not n	noss, check one)
A Rocks are not slippery, no obvious colour (thin layer < 0.5 mm thick)
Deale are clightly slippery vellow-brown to	light green colour (0.5-1 mm trick)
3 - Rocks have a noticeable slippery feel (footi	ng is slippery), with patches of thicker green to brown
algae (1-5 mm thick) 4 - Rocks are very slippery (algae can be remo	oved with thumbnail), numerous large clumps of green
to dark brown algae (5 mm -20 mm thick)	extensive green, brown to black algal mass may have
long strands (> 20 mm thick)	Xionero g. con, are an are a garage and a ga
Note: 1 through 5 represent categories entered into the CABI	N database.
BENTHIC MACROINVERTEBRATE DATA	
Habitat sampled: (check one) ☐ riffle ☐ rapids ☐ str	raight run 99%
400 μm mesh Kick Net	Preservative used: 150 ·
	Sampled sieved on site using "Bucket Swirling Method":
Sampling time (i.e. 5 min.)	YES DINO
No. of sample jars 1 Hox, 3 stream	If YES, debris collected for QAQC
Typical depth in kick area (cm)	

Note: Indicate if a sampling method other than the recommended 400 μm mesh kick net is used,

rield Crew	War-1 +	1						
Field Crew:Sampling Date: (DD/MM/YY	YY) 04/10/2021	Site Code: M	10000					
WATER CHEMISTRY DA	TA Time!							
Air Temp	Time: 12:30	(24 hr clock) Time zone:	MT					
Air Temp: \3	_(°C) Water Temp:	(°C) pH: 7.93	No. 10 10 10 10 10 10 10 10 10 10 10 10 10					
Specific Conductance: 108.	(µs/cm) DO: 10	(mg/L) Turbidity:	0.52 (NTU) 0?					
Check if water samples were of	collected for the following a	nalyses:						
TSS (Total Suspended Sol	ids)	ORP: 172.4						
Nitrogen (i.e. Total, Nitrate Phosphorus (Total, Ortho,	, Nitrite, Dissolved, and/or and/or Dissolved)	Ammonia)	7					
Major Ions (i.e. Alkalinity, F		Sulphate) Other	ZP+M					
Service and the service of the servi		Feb so to						
Note: Determining alkalinity is rec	ommended, as are other anal	yses, but not required for CABIN	assessments.					
CHANNEL DATA								
Slope - Indicate how slope v	vas measured: (check one)							
		the area and						
Calculated from map Scale:	(Note: amall scale man recor	nmended if field measurement is not	possible - i.e. 1:20,000).					
contour interval (vertical d	istance) (m	1),	ES CONTRACTOR CONTRACTOR					
distance between contour	· intervals (horizontal distar norizontal distance =	nce) (m)						
	slope = vertical distance/horizontal distance =							
OR								
Measured in field Circle device used and fill	out table according to dev	ice:						
Measured in field Circle device used and fill a. Survey Equipment b.	Hand Level & Measuring	Tape	Çalculation					
Measured in field Circle device used and fill	out table according to dev Hand Level & Measuring Upstream (U/S)	ice: Tape Downstream(D/S)	Calculation					
Measured in field Circle device used and fill a. Survey Equipment b.	Hand Level & Measuring	Tape	Calculation					
Measured in field Circle device used and fill a. Survey Equipment b. Measurements	Hand Level & Measuring	Downstream(D/S)	Calculation					
Measured in field Circle device used and fill a. Survey Equipment b. Measurements aTop Hairline (T) aMid Hairline (ht) OR	Hand Level & Measuring	Tape	Calculation					
Measured in field Circle device used and fill a. Survey Equipment b. Measurements aTop Hairline (T) aMid Hairline (ht) OR bHeight of rod	Upstream (U/S)	Downstream(D/S) 2. 26						
Measured in field Circle device used and fill a. Survey Equipment b. Measurements aTop Hairline (T) aMid Hairline (ht) OR bHeight of rod aBottom Hairline (B)	Upstream (U/S)	Downstream(D/S)	US _{dis} +DS _{dis} =					
Measured in field Circle device used and fill a. Survey Equipment Measurements Top Hairline (T) Mid Hairline (ht) OR Height of rod Bottom Hairline (B) Distance (dis) OR	Upstream (U/S)	Downstream(D/S) 2. 26	US _{dis} +DS _{dis} =					
Measured in field Circle device used and fill a. Survey Equipment b. Measurements aTop Hairline (T) aMid Hairline (ht) OR bHeight of rod aBottom Hairline (B) bDistance (dis) OR aT-B x 100	Upstream (U/S)	Downstream(D/S) 2. 26	US _{dis} +DS _{dis} =					
Measured in field Circle device used and fill a. Survey Equipment b. Measurements aTop Hairline (T) aMid Hairline (ht) OR bHeight of rod aBottom Hairline (B) bDistance (dis) OR aT-B x 100 Change in height (Δht)	Upstream (U/S)	Downstream(D/S) 2. 26	US _{dis} +DS _{dis} =					
Measured in field Circle device used and fill a. Survey Equipment b. Measurements aTop Hairline (T) aMid Hairline (ht) OR bHeight of rod aBottom Hairline (B) bDistance (dis) OR aT-B x 100	Upstream (U/S)	Downstream(D/S) 2. 26	US _{dis} +DS _{dis} = 60~ DS _{ht} -US _{ht} =					
Measured in field Circle device used and fill a. Survey Equipment b. Measurements aTop Hairline (T) aMid Hairline (ht) OR bHeight of rod aBottom Hairline (B) bDistance (dis) OR aT-B x 100 Change in height (Δht)	Upstream (U/S)	Downstream(D/S) 2. 26	US _{dis} +DS _{dis} = 60~ DS _{ht} -US _{ht} =					
Measured in field Circle device used and fill a. Survey Equipment b. Measurements aTop Hairline (T) aMid Hairline (ht) OR bHeight of rod aBottom Hairline (B) Distance (dis) OR aT-B x 100 Change in height (Δht) Slope (Δht/total dis)	Upstream (U/S)	Downstream(D/S) 2. 26	US _{dis} +DS _{dis} = 60~ DS _{ht} -US _{ht} =					

	_	- MJ	new	Site Coo	le: M	ROF	ield
Field Crew: Kalagh McCally	Kygon						
Sampling Date: (DD/MM/YYYY)	110/20	150				ALCO CONTRACTOR OF THE PARTY OF	
				was A	AU TH		a Mallan
Widths and Depth	THE SE	(24)				1/ -	ick cross
- P1.	+ area	(Ind	icate wher	e in sampl	e reach, e	x. d/s of K	ick area)
Location at site:	1 tope	B-1	Netted Str	eam Width	1: 10.25	(m)	
A - Bankfull Width:(m)				42	s wore co	(cm)
C - Bankfull-Wetted Depth (height from	water surfa	ace to Ban	Kiuli)		mine beh		
				F		ATA DAY	
10	1	†	† †	-B-	H within		of rest E
V1 D1	V2 D2	N3 1	74 V5 04 D5	/			
-		d keess	-				
Note:	of E. C. could	etant la catio					WMAHO
Wetted widths > 5 m, measure a minimum of Wetted widths < 5 m, measure 3-4 equidista	ant locations	stant locations.	ons,				us again
Velocity and Depth Del a	HACK	ed o	liacho	nge 1	neas	mer	vent.
Check appropriate velocity measuring of shore and depth are required regardless	device and	fill out the	appropriat	e section in	chart belo	w. Distanc	e from
☐ Velocity Head Rod (or ruler): Velo			√[2(ΔD/1	00) * 9.811			
Rotary meters: Gurley/Price/Mini-I				TOTAL BELLEVIOLE	ion short for	b isothews	
☐ Direct velocity measurements: ☐					on chart for	rcalculation	1)
	1	A State of	State of the second		Contract Contracts	to the second	
Distance from Shore (m)		2	3	4	5	6	AVG
Depth (D) (cm)							
Velocity Head Rod (ruler)							
Flowing water Depth (D ₁) (cm)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
Depth of Stagnation (D ₂) (cm)							
Change in depth (ΔD=D ₂ -D ₁) (cm)	1 1 2 2			-			
Rotary meter							
Revolutions							
Time (minimum 40 seconds)							
Direct Measurement or calculation							
Velocity (V) (m/s)							

Sampling Date: (DD/MM/YYYY) OH/10/2021

Site Code: NOR of

SUBSTRATE DATA

Surrounding/Interstitial Material

Circle the substrate size category for the surrounding material.

Substrate Size Class	Category
Organic Cover	0
< 0.1 cm (fine sand, silt or clay)	- 4100
0.1-0.2 cm (coarse sand)	(2)
0.2-1.6 cm (gravel)	3
1.6-3.2 cm (small pebble)	4
3.2-6.4 cm (large pebble)	5
6.4-12.8 cm (small cobble)	6
12.8-25.6 cm (cobble)	7
> 25.6 cm (boulder)	8
Bedrock	9

100 Pebble Count & Substrate Embeddedness

- Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.
- Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.
- Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4

	Diamotor (an)										
	Diameter (cm)	Е		Diameter (cm)	E		Diameter (cm)	E		Diameter (cm)	E
1	14.5		26	9.9		51	7.6		76	8-6	
2	24.0		27	230		52	240		77	3.4	
3	8.5		28	15.5		53	220		78	7.2	
4	20.3		29	3.3		54	3.3		79	179	1000
5	23.0		30	5.0	3/4	55	6.8		80	6.2	1/4
6	9.2		31	13.8		56	12.1		81	5.4	-
7	4.4		32	31.5	1	57	9.4	(nase	82	2.9	
8	12.7		33	10.0		58	250		83	7.1	
9	16-4		34	7.5	Moon	59	11.8	inegg	84	3.4	
10	14.6	1/4	35	5.2		60	10-7	0	85	7.6	
11	17.5		36	11.9		61	14.5		86	4.5	
12	2.0		37	8.2		62	7.3		87	30.4	
.13	7.8		38	328		63	4.2		88	10.9	
14	3.7		39	6.8		64	24.5		89	5.2	1000
15	4.4		40	6.5	0	65	10.7		90	16-5	0
16	13.8		41	9.0		66	6.7		91	21	
17	12.7		42	9.3		67	1.2	ra enui	92	2.8	
18	28.0		43	7.5		68	12.5		93	1.3	
19	18.8		44	26.3		69	11.5		94	16.5	
20		14	45	26.5		70	9.4	0	95	12-9	
21	13.0	79	46	3.8		71	19.3	9	96	11.0	
22			47	21.0		72	5.9	P 1999	97	5-4	
	10.3		48	19.8		73	CONTRACTOR AND DESCRIPTION OF THE PARTY OF T		98		
23	124			THE RESERVE THE PERSON NAMED IN		74	13.7		99	6.1	
24	7.9		49	13.5	21	75	15.4		100	4.7	91.
25	6.4		50	26-0	3/4	/5	12.4		100	0.85	5/4

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

Field Crew. Ranga
Sampling Date: (DD/MM/YYYY) 04/10/2021
ATACISTA STARTED
SITE INSPECTION
Site Inspected by: Kailegh McCall
Communication Information
□ Itinerary left with contact person (include contact numbers)
Contact Person: Chad Houses Time checked-in: Bioo Form of communication: □ radio ☑ cell □ satellite □ hotel/pay phone □ SPOT
Phone number: (25) 423-6344
Vehicle Safety
Safety equipment (first aid, fire extinguisher, blanket, emergency kit in vehicle)
Equipment and chemicals safely secured for transport
☑ Vehicle parked in safe location; pylons, hazard light, reflective vests if necessary
Notes:
Shore & Wading Safety
□ Wading Task Hazard Analysis read by all field staff
☑ Wading Safe Work Procedures read by all field staff
Instream hazards identified (i.e. log jams, deep pools, slippery rocks)
□ PFD worn
Appropriate footwear, waders, wading belt
□ Belay used
Notes:

Site Code: MARO

Velocimeter Measurement Field Sheet

Site: MOROD!	Staff Gauge:
Date: 04/0/2021	Wetted Width: 6.25
Time: 15 30	Bankful Width: 12
Staff: SN +KM	Instrument ID: Flowprob
Photos: 1. Completed Field Sheet	3. Downstream
2. Upstream	4. Across (from left bank if possible)

	Distance (m)	Depth (m)	Velocity (m/s)	Notes
1	10.4	0400	0	
2	190.8	0.180	0.4	10-7
3	1.2	0.142	0.4	3
4	1.6	0.138	0.2	-
5	2.0	0.130	0.6	-
6	2.4	0.128	0.1	
7	2.8	0.198	B.4	
8	2.2	0-18.7	8.5	
9	3.6	0.255	0.6	
10	4.0	0.248	0.5	
11	4.4	0.220	6.6	
12	4.8	0.225	0.8	
13	52	6.185	0.3	
14	5.6	8.145	0.4	1
15	10	0.210	0,4	

Continued from other side

Contin	ueu mom ot	iler side		
16	6-41	0.265	0.4	
17	6.8	0.125	0.4	
18	7.2	0.135	0.3	
19	7.6	0.140	0.2	
20	80	0,100	0.2	
21	8.4	0.995	0	and the second second
22	8.8	0.648	0	
23	9.2	0.121	0.1	
24	9.6	0.063	0.2	
25	13.	0098	0	
26				
27				-
28	A .			
29			-	
30	Control of the Contro			
31				
32				
33	- KM		The state of the s	
34				
35				

ાં 60

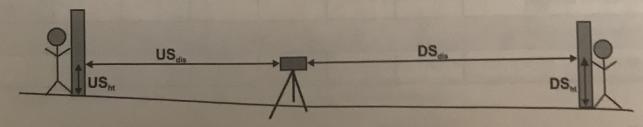
ssq

1 pe

Comments:	brae	con les	Somis	0	edolies
	0			0	

Sampling Date: (DD/MM/YYYY) 04/10/202(
☐ Occupational Health & Safety: Site Inspection Sheet completed
PRIMARY SITE DATA
CABIN Study Name:Local Basin Name:
River/Stream Name:Stream Order: (map scale 1:50,000)
Select one: Test Site Potential Reference Site
Geographical Description/Notes: Surrounding Land Use: (check those present) Forest Logging Mining Mining Mortical Service Residential/Urban Commercial/Industrial Commercial/Industrial
Dominant Surrounding Land Use: (check one) Information Source:
Location Data (Sint men 1-8.0) sustan meng heat of report-windley yrangele yithighs one shock - \$ 1.3
Latitude: 49.42076 N Longitude: - 114.91049 W (DMS or DD) Elevation: GPS Datum: GRS80 (NAD83/WGS84) D Other:
Site Location Map Drawing Alder hell fook overlags creek
Note: Indicate north
Wa hicknet
CABIN Field Sheet June 2012 Page 1 of 6

Field Crew: Laileigh McCall Eugen Matricer Site Code: MOROZ


Field Crew: Kaileigh McCall Experiment Marveer Site out.
Sampling Date: (DD/MM/YYYY) 04/10/2021
Photos □ Downstream □ Across Site □ Aerial View □ Substrate (exposed) □ Substrate (aquatic) □ Other
REACH DATA (represents 6 times bankfull width)
1. Habitat Types: (check those present) ☐ Riffle ☐ Rapids ☐ Straight run ☐ Pool/Back Eddy
2. Canopy Coverage: (stand in middle of stream and look up, check one) □ 0 % □ 1-25 % □ 26-50 % □ 51-75 % □ 76-100 %
3. Macrophyte Coverage: (not algae or moss, check one) ☐ 0 % ☐ 1-25 % ☐ 26-50 % ☐ 51-75 % ☐ 76-100 %
4. Streamside Vegetation: (check those present) ☐ ferns/grasses ☐ shrubs ☐ deciduous trees ☐ coniferous trees
5. Dominant Streamside Vegetation: (check one) ☐ ferns/grasses ☐ shrubs ☐ deciduous trees ☐ coniferous trees
6. Periphyton Coverage on Substrate: (benthic algae, not moss, check one)
 1 - Rocks are not slippery, no obvious colour (thin layer < 0.5 mm thick) 2 - Rocks are slightly slippery, yellow-brown to light green colour (0.5-1 mm thick) 3 - Rocks have a noticeable slippery feel (footing is slippery), with patches of thicker green to brown algae (1-5 mm thick)
4 - Rocks are very slippery (algae can be removed with thumbnail) numerous large clumps of
5 - Rocks are mostly obscured by algal mat, extensive green, brown to black class many
ong stands (* 20 min trick)
Note: 1 through 5 represent categories entered into the CABIN database.
BENTHIC MACROINVERTEBRATE DATA
Habitat sampled: (check one) ☑ riffle ☐ rapids ☐ straight run
400 μm mesh Kick Net Person compliant Preservative used: 99.4. 100
reison sampling Buillions Sampled :
Sampling time (i.e. 3 min.) YES NO
No. of sample jars If YES, debris collected for QAQC
Typical depth in kick area (cm)
Note: Indicate if a compliment

Note: Indicate if a sampling method other than the recommended 400 μm mesh kick net is used.

Field Crew: kailegh Mcall Eggs Matron	Site Code: MaRas 2
Sampling Date: (DD/MM/YYYY) 04/10/2021	
WATER CHEMISTRY DATA Time: 9:45 (24 hr	
Air Temp: 4.0 (°C) Water Temp: 3.5	
Specific Conductance:	DPD-1811
Nitrogen (i.e. Total, Nitrate, Nitrite, Dissolved, and/or Ammor	ia)
Phosphorus (Total, Ortho, and/or Dissolved)	
Major Ions (i.e. Alkalinity, Hardness, Chloride, and/or Sulpha	te) Other EPH
Note: Determining alkalinity is recommended, as are other analyses, but	t not required for CABIN assessments.
CHANNEL DATA Slope - Indicate how slope was measured: (check one)	
Stope - Indicate now slope was incasured. (check one)	
Calculated from map Scale: (Note: small scale map recommended contour interval (vertical distance) (m),	if field measurement is not possible - i.e. 1:20,000).
distance between contour intervals (horizontal distance)slope = vertical distance/horizontal distance =	(m)
Measured in field Circle device used and fill out table according to device: a. Survey Equipment b. Hand Level & Measuring Tape	
	ownstream(D/S) Calculation

Measurements	Upstream (U/S)	Downstream(D/S)	Calculation
^a Top Hairline (T)			
^a Mid Hairline (ht) OR			
^b Height of rod	1,27	2.3	
^a Bottom Hairline (B)	-		
^b Distance (dis) OR	30	30	US _{dis} +DS _{dis} =
^a T-B x 100	^a US _{dis} =T-B	^a DS _{dis} =T-B	60
Change in height (Δht)			DS _{ht} -US _{ht} =
Slope (Δht/total dis)			0.014+

Field Crew: Kaileigh Morall Engeri Mat	Site Code: More	02
Sampling Date: (DD/MM/YYYY)	The second secon	
Widths and Depth A Lee extra	discharge sheet	
Location at site: U/S of Koknet	_(Indicate where in sample reach, ex. d/	s of kick area)
A - Bankfull Width: 7.25 (m)	B - Wetted Stream Width: 5-3	(m)
C - Bankfull-Wetted Depth (height from water surface to	Bankfull): 23-5	_(cm)
	A	io isio igi oca il ile i espantità Li
1c	A A B	
V1 V2 V3 D1 D2 D3	V4 V5 D4 D5	i) and rejets is
		chimin had late
Note: Wetted widths > 5 m, measure a minimum of 5-6 equidistant lo Wetted widths < 5 m, measure 3-4 equidistant locations.	cations;	НАМИЕТ
Velocity and Depth Check appropriate velocity measuring device and fill out shore and depth are required regardless of method:	ed discharge sheet the appropriate section in chart below. Dis	stance from

Velocity Head Rod (or ruler): Velocity Equation (m/s) = √ [2(ΔD/100) * 9.81]

Rotary meters: Gurley/Price/Mini-Price/Propeller (Refer to specific meter conversion chart for calculation)

Direct velocity measurements: □ Marsh-McBirney □ Sontek or □ Other □ Prove

1
2
3
4
5
6
AVG

Distance from Shore (m)

Depth (D) (cm)

Velocity Head Rod (ruler)

Flowing water Depth (D₁) (cm)

Depth of Stagnation (D₂) (cm)

Change in depth (ΔD=D₂-D₁) (cm)

Rotary meter

Revolutions

Time (minimum 40 seconds)

Direct Measurement or calculation

F

Velocity (V) (m/s)

Field Crew: keilcola Macatt	
Sampling Date: (DD/MM/YYYY) OH/10/2021	

SUBSTRATE DATA

Surrounding/Interstitial Material

Circle the substrate size category for the surrounding material.

Substrate Size Class	Category
Organic Cover	Category
< 0.1 cm (fine sand, silt or clav)	0
0.1-0.2 cm (coarse sand)	(3)
0.2-1.6 cm (gravel)	3
1.6-3.2 cm (small pebble)	4
3.2-6.4 cm (large pebble)	5
6.4-12.8 cm (small cobble)	6
12.8-25.6 cm (cobble)	7
> 25.6 cm (boulder)	8
Bedrock	9

100 Pebble Count & Substrate Embeddedness

- Measure the intermediate axis (100 rocks) and embeddedness (10 rocks) of substrate in the stream bed.
- Indicate B for bedrock, S for sand/silt/clay (particles < 0.2 cm) and O for organic material.
- Embeddedness categories (E): Completely embedded = 1, 3/4 embedded, 1/2 embedded, 1/4 embedded, unembedded = 0

	Diameter (cm)	E		Diameter (cm)	E	40000	Diameter (cm)	Е			
1	17.2		26	9.0		51	13.6		76	Diameter (cm)	E
2	6.4		27	11.7		52	4.3		77	6.7	
3	5.4		28	66.1		53	75.7		78	8.6	
4	32.1		29	9.8		54	3.0		79	12.2	
5	6.5		30	29.3	1/4	55	7.8		80	4.9	34
6	6.2		31	4.3	10000	56	13.9		81	20.2	1-24
7	6.3		32	17.2		57	3.2	1300	82	7.8	
8	12.1		33	7.8		58	4.5		83	9.8	
9	190		34	1.2	PARSON	59	18.1		84	1.0	- T
10	18.6	1/2	35	2.8		60	17.0	1	85	3.2	
11	6.7		36	0.4		61	20.0		86	11.5	
12	24.1		37	45.1		62	8,3		87	4.0	
13	5.7		38	26.5		63	16.5		88	21.6	
14	8.5		39	7.0		64	15.5		89	8.5	
15	29.2		40	10.5	314	65	39.0		90	1.8	h
16	6.9		41	18.2		66	36.0		91	0.6	
17	8.3		42	6.6		67	7.1		92	1.1	
18	11.6		43	19.5		68	8.5		93	4.2	
19	1-7		44	7.3		69	29.5		94	0.9	
20	7.5	0	45	220		70	10.8	1/2	95	15.5	
21	5.4		46	5.1		71	22.5		96	10.1	
22	13.8		47	1.9		72	1.3	1	97	25.2	
23	9.6		48	17.9		73	10.C		98	10.6	
24			49	4.3		74	8.5		99	11.0	
25	8.1		50	250	1	75	4.7		100	0.9	0

Note: The Wolman D50 (i.e. median diameter), Wolman Dg (i.e. geometric mean diameter) and the % composition of the substrate classes will be calculated automatically in the CABIN database using the 100 pebble data. All 100 pebbles must be measured in order for the CABIN database tool to perform substrate calculations.

Field Crew: kaileigh McCallyn Engeri Francisco
Sampling Date: (DD/MM/YYYY) ou/10/2021
ATASI Z
SITE INSPECTION
SITE INSPECTION
Site Inspected by: Kaleigh McCall UM
Communication Information
Itinerary left with contact person (include contact numbers)
Contact Person:
Phone number: (250) 423 - 0344
Vehicle Safety
Safety equipment (first aid, fire extinguisher, blanket, emergency kit in vehicle)
Equipment and chemicals safely secured for transport
Vehicle parked in safe location; pylons, hazard light, reflective vests if necessary
Notes:
Shore & Wading Safety
Wading Task Hazard Analysis read by all field staff
Wading Safe Work Procedures read by all field staff
Instream hazards identified (i.e. log jams, deep pools, slippery rocks)
□ PFD worn
Appropriate footwear, waders, wading belt
□ Belay used
lotes:

Site Code: ______

Site:	MOROTO 2	Staff Gauge:
Date:	1505/01/10	Wetted Width: 5.3
Time:	10:00	Bankful Width: 7.25
Staff:	KM + EM	Instrument ID: Gobal Flow Probe
Photos	1. Completed Field Sheet	3. Downstream
	2. Upstream	4. Across (from left bank if possible)

	Distance (m)	Depth (m)	Velocity (m/s)	Notes
1	2	0.219	0.	
2	2.15	0.225	0	
3	2.3	0247	0	
4	2.45	0.27	0	
5	2.6	0.206	0	
6	2.75	0.206	0.2	
7	2.9	0.132	0.2	
8	3.05	0.186	0.1	
9	3.20	0.137	0.3	
10	3.35	0.147	0.5	
11	3,50	6.153	0.5	- 27/92 1
12	2.65	0.01	0.5	
13	3.90	0.165	0.3	
14	3,25	0.154	0	
15	4.10	0.160	0	1 10 10

ol .e.

91 S

397

Conti	inued	from	other	side

16	
17	
19 4.70 6.172 6 20 4 45 6.164 6.1 21 5 8.184 6.1 22 5.15 6.20 6.2 23 5.30 6.201 6.1 24 7.45 6.155 0 25 5.60 6.072 6.2 26 5.75 6.158 6.1	
20 4 95 0.164 0.1 21 5 A.184 0.1 22 5.15 0.197 6.2 23 5.30 6301 0.1 24 7.43 0.155 0 25 5.60 0.072 0.2 26 5.75 0.188 0.1	
21	
22 5.5 0.47 6.2 23 5.30 6201 0.1 24 7.43 0.155 0 25 5.60 0.072 0.2 26 5.75 0.158 0.1	
23 5.30 6301 0.1 24 7.45 0.155 0 25 5.60 0.072 0.2 26 5.75 0.158 0.1 27 5.90 0.13) 0	
23 5.30 6301 0.1 24 7.45 0.155 0 25 5.60 0.072 0.2 26 5.75 0.158 0.1 27 5.90 0.13) 0	
24 7.45 0.155 0 25 5.60 0.072 0.2 26 5.75 0.158 0.1 27 5.90 0.13) 0	
25 5.60 0.672 0.2 26 5.75 0.158 0.1 27 5.90 0.13) 0	25.5
26 5.75 0.158 0.1 27 5.90 0.13) 0	
27 5.90 0.13)	
0.03	
29 6.20 8.170 0	
30 6.35 0.17.6 6.1	
31 6.5 0.072 0	
32	Santa a sa
33	
34	
35	

Comments:	lorae	noks	12/3	forming	abiel
	0			0	

Appendix C: CARO Reports

Elk River Alliance 72

CERTIFICATE OF ANALYSIS

REPORTED TO Elk River Alliance

PO Box 2095, 1111 2nd Ave

Fernie, BC V0B1M0

ATTENTION Kaileigh McCallum

PO NUMBER

PROJECT ERA-CBWM

PROJECT INFO [info]

WORK ORDER 21J0990

RECEIVED / TEMP 2021-10-06 09:50 / 7.4°C

REPORTED 2021-10-14 16:07

COC NUMBER No Number

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

We've Got Chemistry

Ahead of the Curve

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too.

It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at teamcaro@caro.ca

Authorized By:

Team CARO
Client Service Representative

REPORTED TO Elk River Alliance PROJECT ERA-CBWM

WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
LIZ001_20211003_0930 (21J0990-01) M	atrix: Water Sam	pled: 2021-10-03 0	9:30			
Anions						
Chloride	0.20	AO ≤ 250	0.10	mg/L	2021-10-13	
Nitrate (as N)	< 0.010	MAC = 10	0.010		2021-10-13	HT1
Nitrite (as N)	< 0.010	MAC = 1	0.010	mg/L	2021-10-13	HT1
Phosphate (as P)	< 0.0050	N/A	0.0050	mg/L	2021-10-13	HT1
Sulfate	173	AO ≤ 500	1.0	mg/L	2021-10-13	
BCMOE Aggregate Hydrocarbons						
EPHw10-19	< 250	N/A	250	μg/L	2021-10-13	
EPHw19-32	< 250	N/A	250		2021-10-13	
Surrogate: 2-Methylnonane (EPH/F2-4)	80	-	60-140	10	2021-10-13	
Calculated Parameters						
Hardness, Total (as CaCO3)	314	None Required	0.500	ma/L	N/A	
Nitrate+Nitrite (as N)	< 0.0100	N/A	0.0100		N/A	
Nitrogen, Total	< 0.0500	N/A	0.0500		N/A	
Dissolved Metals						
Aluminum, dissolved	< 0.0050	N/A	0.0050	ma/l	2021-10-10	
Antimony, dissolved	< 0.00020	N/A	0.00020		2021-10-10	
Arsenic, dissolved	< 0.00050	N/A	0.00050		2021-10-10	
Barium, dissolved	0.0690	N/A	0.0050		2021-10-10	
Beryllium, dissolved	< 0.00010	N/A	0.00010		2021-10-10	
Bismuth, dissolved	< 0.00010	N/A	0.00010		2021-10-10	
Boron, dissolved	< 0.0500	N/A	0.0500		2021-10-10	
Cadmium, dissolved	< 0.000010	N/A	0.000010		2021-10-10	
Calcium, dissolved	88.0	N/A		mg/L	2021-10-10	
Chromium, dissolved	< 0.00050	N/A	0.00050		2021-10-10	
Cobalt, dissolved	< 0.00010	N/A	0.00010		2021-10-10	
Copper, dissolved	< 0.00040	N/A	0.00040		2021-10-10	
Iron, dissolved	< 0.010	N/A	0.010		2021-10-10	
Lead, dissolved	< 0.00020	N/A	0.00020		2021-10-10	
Lithium, dissolved	0.00361	N/A	0.00010		2021-10-10	
Magnesium, dissolved	22.8	N/A	0.010		2021-10-10	
Manganese, dissolved	0.00221	N/A	0.00020		2021-10-10	
Mercury, dissolved	< 0.000010	N/A	0.000010		2021-10-13	
Molybdenum, dissolved	0.00167	N/A	0.00010		2021-10-10	
Nickel, dissolved	< 0.00040	N/A	0.00040		2021-10-10	
Phosphorus, dissolved	< 0.050	N/A	0.050		2021-10-10	
Potassium, dissolved	0.43	N/A		mg/L	2021-10-10	
Selenium, dissolved	< 0.00050	N/A	0.00050		2021-10-10	
Silicon, dissolved	3.1	N/A		mg/L	2021-10-10	
Silver, dissolved	< 0.000050	N/A	0.000050		2021-10-10	
Sodium, dissolved	1.72	N/A		mg/L	2021-10-10	
Strontium, dissolved	1.44	N/A	0.0010		2021-10-10	
				-		Page 2 of 2

REPORTED TO Elk River Alliance PROJECT ERA-CBWM

WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier		
LIZ001_20211003_0930 (21J0990-01) Matrix: Water Sampled: 2021-10-03 09:30, Continued								
Dissolved Metals, Continued								
Sulfur, dissolved	63.4	N/A	3.0	mg/L	2021-10-10			
Tellurium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-10			
Thallium, dissolved	< 0.000020	N/A	0.000020	mg/L	2021-10-10			
Thorium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-10			
Tin, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-10			
Titanium, dissolved	< 0.0050	N/A	0.0050	mg/L	2021-10-10			
Tungsten, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-10			
Uranium, dissolved	0.000357	N/A	0.000020	mg/L	2021-10-10			
Vanadium, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-10			
Zinc, dissolved	< 0.0040	N/A	0.0040	mg/L	2021-10-10			
Zirconium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-10			
General Parameters								
Alkalinity, Total (as CaCO3)	157	N/A	1.0	mg/L	2021-10-08			
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	N/A		mg/L	2021-10-08			
Alkalinity, Bicarbonate (as CaCO3)	157	N/A		mg/L	2021-10-08			
Alkalinity, Carbonate (as CaCO3)	< 1.0	N/A		mg/L	2021-10-08			
Alkalinity, Hydroxide (as CaCO3)	< 1.0	N/A		mg/L	2021-10-08			
Carbon, Total Organic	1.06	N/A		mg/L	2021-10-12			
Carbon, Dissolved Organic	0.92	N/A		mg/L	2021-10-12			
Nitrogen, Total Kjeldahl	< 0.050	N/A	0.050	mg/L	2021-10-13			
Phosphorus, Total (as P)	0.0183	N/A	0.0050	mg/L	2021-10-14			
Solids, Total Suspended	2.4	N/A	2.0	mg/L	2021-10-12	HT1		
Total Metals								
Aluminum, total	0.0517	OG < 0.1	0.0050	mg/L	2021-10-14			
Antimony, total	< 0.00020	MAC = 0.006	0.00020	mg/L	2021-10-14			
Arsenic, total	< 0.00050	MAC = 0.01	0.00050	mg/L	2021-10-14			
Barium, total	0.0673	MAC = 2	0.0050	mg/L	2021-10-14			
Beryllium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14			
Bismuth, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14			
Boron, total	< 0.0500	MAC = 5	0.0500	mg/L	2021-10-14			
Cadmium, total	0.000040	MAC = 0.005	0.000010	mg/L	2021-10-14			
Calcium, total	97.4	None Required	0.20	mg/L	2021-10-14			
Chromium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2021-10-14			
Cobalt, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14			
Copper, total	< 0.00040	MAC = 2	0.00040	mg/L	2021-10-14			
Iron, total	0.061	AO ≤ 0.3	0.010	mg/L	2021-10-14			
Lead, total	0.00023	MAC = 0.005	0.00020	mg/L	2021-10-14			
Lithium, total	0.00392	N/A	0.00010	mg/L	2021-10-14			
Magnesium, total	25.4	None Required	0.010	mg/L	2021-10-14			
Manganese, total	0.00526	MAC = 0.12	0.00020	mg/L	2021-10-14			
Mercury, total	< 0.000010	MAC = 0.001	0.000010	mg/L	2021-10-13			
Molybdenum, total	0.00170	N/A	0.00010	mg/L	2021-10-14	Page 3 of 2		

REPORTED TO Elk River Alliance PROJECT ERA-CBWM

WORK ORDER REPORTED

	Result	Guideline	RL	Units	Analyzed	Qualifier
LIZ001_20211003_0930 (21J0990-01) Ma	atrix: Water Sam	pled: 2021-10-03 09	:30, Continu	ed		
Total Metals, Continued						
Nickel, total	< 0.00040	N/A	0.00040	mg/L	2021-10-14	
Phosphorus, total	< 0.050	N/A	0.050	mg/L	2021-10-14	
Potassium, total	0.49	N/A	0.10	mg/L	2021-10-14	
Selenium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2021-10-14	
Silicon, total	3.0	N/A	1.0	mg/L	2021-10-14	
Silver, total	< 0.000050	None Required	0.000050	mg/L	2021-10-14	
Sodium, total	1.92	AO ≤ 200	0.10	mg/L	2021-10-14	
Strontium, total	1.43	7	0.0010	mg/L	2021-10-14	
Sulfur, total	68.2	N/A	3.0	mg/L	2021-10-14	
Tellurium, total	< 0.00050	N/A	0.00050	mg/L	2021-10-14	
Thallium, total	< 0.000020	N/A	0.000020	mg/L	2021-10-14	
Thorium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14	
Tin, total	< 0.00020	N/A	0.00020	mg/L	2021-10-14	
Titanium, total	< 0.0050	N/A	0.0050	mg/L	2021-10-14	
Tungsten, total	< 0.0010	N/A	0.0010	mg/L	2021-10-14	
Uranium, total	0.000373	MAC = 0.02	0.000020	mg/L	2021-10-14	
	< 0.0010	N/A	0.0010	mg/L	2021-10-14	
Vanadium, total	< 0.0010					
Vanadium, total Zinc, total Zirconium, total	< 0.0010 < 0.0040 < 0.00010	AO ≤ 5 N/A	0.0040 0.00010		2021-10-14 2021-10-14	
Zinc, total	< 0.0040 < 0.00010	AO ≤ 5 N/A	0.00010			
Zinc, total Zirconium, total	< 0.0040 < 0.00010	AO ≤ 5 N/A	0.00010			
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma	< 0.0040 < 0.00010	AO ≤ 5 N/A	0.00010			
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma	< 0.0040 < 0.00010 atrix: Water Sam	AO ≤ 5 N/A pled: 2021-10-03 13	0.00010	mg/L	2021-10-14	HT1
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma Anions Chloride	< 0.0040 < 0.00010 atrix: Water Sam	AO ≤ 5 N/A pled: 2021-10-03 13 AO ≤ 250	0.00010 3:30	mg/L mg/L mg/L	2021-10-14	HT1 HT1
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma Anions Chloride Nitrate (as N)	< 0.0040 < 0.00010 atrix: Water Sam 0.20 < 0.010	AO ≤ 5 N/A pled: 2021-10-03 13 AO ≤ 250 MAC = 10	0.00010 6:30 0.10 0.010	mg/L mg/L mg/L mg/L	2021-10-14 2021-10-13 2021-10-13	
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma Anions Chloride Nitrate (as N) Nitrite (as N)	< 0.0040 < 0.00010 atrix: Water Sam 0.20 < 0.010 < 0.010	AO ≤ 5 N/A pled: 2021-10-03 13 AO ≤ 250 MAC = 10 MAC = 1	0.00010 0.10 0.010 0.010 0.0050	mg/L mg/L mg/L mg/L	2021-10-14 2021-10-13 2021-10-13 2021-10-13	HT1
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate	< 0.0040 < 0.00010 atrix: Water Sam 0.20 < 0.010 < 0.010 < 0.0050	AO ≤ 5 N/A pled: 2021-10-03 13 AO ≤ 250 MAC = 10 MAC = 1 N/A	0.00010 0.10 0.010 0.010 0.0050	mg/L mg/L mg/L mg/L mg/L	2021-10-14 2021-10-13 2021-10-13 2021-10-13	HT1
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate	< 0.0040 < 0.00010 atrix: Water Sam 0.20 < 0.010 < 0.010 < 0.0050	AO ≤ 5 N/A pled: 2021-10-03 13 AO ≤ 250 MAC = 10 MAC = 1 N/A	0.00010 0.10 0.010 0.010 0.0050 1.0	mg/L mg/L mg/L mg/L mg/L	2021-10-14 2021-10-13 2021-10-13 2021-10-13	HT1
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons	< 0.0040 < 0.00010 atrix: Water Sam 0.20 < 0.010 < 0.010 < 0.0050 182	AO ≤ 5 N/A pled: 2021-10-03 13 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	0.00010 0.10 0.010 0.010 0.0050 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-14 2021-10-13 2021-10-13 2021-10-13 2021-10-13	HT1
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19	< 0.0040 < 0.00010 atrix: Water Sam 0.20 < 0.010 < 0.010 < 0.0050 182 < 250	AO ≤ 5 N/A pled: 2021-10-03 13 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	0.00010 0.10 0.010 0.010 0.0050 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-14 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13	HT1
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4)	< 0.0040 < 0.00010 atrix: Water Sam 0.20 < 0.010 < 0.010 < 0.0050 182 < 250 < 250	AO ≤ 5 N/A pled: 2021-10-03 13 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	0.00010 0.10 0.010 0.010 0.0050 1.0 250 250	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-14 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13	HT1
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4)	< 0.0040 < 0.00010 atrix: Water Sam 0.20 < 0.010 < 0.010 < 0.0050 182 < 250 < 250	AO ≤ 5 N/A pled: 2021-10-03 13 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	0.00010 0.10 0.010 0.010 0.0050 1.0 250 250	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L %	2021-10-14 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13	HT1
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters	< 0.0040 < 0.00010 atrix: Water Sam 0.20 < 0.010 < 0.010 < 0.0050 182 < 250 < 250 77	AO ≤ 5 N/A pled: 2021-10-03 13 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A	0.00010 0.10 0.010 0.010 0.0050 1.0 250 250 60-140	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L %	2021-10-14 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13	HT1
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters Hardness, Total (as CaCO3)	< 0.0040 < 0.00010 atrix: Water Sam 0.20 < 0.010 < 0.010 < 0.0050 182 < 250 < 250 77	AO ≤ 5 N/A pled: 2021-10-03 13 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A N/A None Required	0.00010 0.10 0.010 0.010 0.0050 1.0 250 250 60-140 0.500	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L %	2021-10-14 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 N/A	HT1
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total	< 0.0040 < 0.00010 atrix: Water Sam 0.20 < 0.010 < 0.0050 182 < 250 < 250 77 337 < 0.0100	AO ≤ 5 N/A pled: 2021-10-03 13 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A	0.00010 0.10 0.010 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L %	2021-10-14 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 N/A N/A	HT1
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total	< 0.0040 < 0.00010 atrix: Water Sam 0.20 < 0.010 < 0.0050 182 < 250 < 250 77 337 < 0.0100	AO ≤ 5 N/A pled: 2021-10-03 13 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A	0.00010 0.10 0.010 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100	mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L %	2021-10-14 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 N/A N/A	HT1
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total Dissolved Metals	< 0.0040 < 0.00010 atrix: Water Sam 0.20 < 0.010 < 0.0050 182 < 250 < 250 77 337 < 0.0100 0.112	AO ≤ 5 N/A pled: 2021-10-03 13 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A N/A	0.00010 0.10 0.010 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100 0.0500	mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L % mg/L mg/L mg/L mg/L mg/L	2021-10-14 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 N/A N/A N/A N/A	HT1
Zinc, total Zirconium, total LIZ003_20211003_1330 (21J0990-02) Ma Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total Dissolved Metals Aluminum, dissolved	< 0.0040 < 0.00010 atrix: Water Sam 0.20 < 0.010 < 0.010 < 0.0050 182 < 250 < 250	AO ≤ 5 N/A pled: 2021-10-03 13 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A N/A N/A	0.00010 0.10 0.010 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100 0.0500	mg/L mg/L mg/L mg/L mg/L pg/L pg/L pg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-14 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13	HT1

REPORTED TO PROJECT

Elk River Alliance ERA-CBWM WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
LIZ003_20211003_1330 (21J0990-02) M	atrix: Water Samp	led: 2021-10-03 1	3:30, Continu	ed		
Dissolved Metals, Continued						
Beryllium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-10	
Bismuth, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-10	
Boron, dissolved	< 0.0500	N/A	0.0500	mg/L	2021-10-10	
Cadmium, dissolved	0.000012	N/A	0.000010	mg/L	2021-10-10	
Calcium, dissolved	93.7	N/A	0.20	mg/L	2021-10-10	
Chromium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-10	
Cobalt, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-10	
Copper, dissolved	< 0.00040	N/A	0.00040	mg/L	2021-10-10	
Iron, dissolved	< 0.010	N/A	0.010	mg/L	2021-10-10	
Lead, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-10	
Lithium, dissolved	0.00389	N/A	0.00010	mg/L	2021-10-10	
Magnesium, dissolved	25.1	N/A	0.010	mg/L	2021-10-10	
Manganese, dissolved	0.00441	N/A	0.00020	mg/L	2021-10-10	
Mercury, dissolved	< 0.000010	N/A	0.000010	mg/L	2021-10-13	
Molybdenum, dissolved	0.00195	N/A	0.00010	mg/L	2021-10-10	
Nickel, dissolved	< 0.00040	N/A	0.00040	mg/L	2021-10-10	
Phosphorus, dissolved	< 0.050	N/A	0.050	mg/L	2021-10-10	
Potassium, dissolved	0.48	N/A	0.10	mg/L	2021-10-10	
Selenium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-10	
Silicon, dissolved	3.5	N/A	1.0	mg/L	2021-10-10	
Silver, dissolved	< 0.000050	N/A	0.000050	mg/L	2021-10-10	
Sodium, dissolved	1.86	N/A	0.10	mg/L	2021-10-10	
Strontium, dissolved	1.56	N/A	0.0010	mg/L	2021-10-10	
Sulfur, dissolved	70.3	N/A	3.0	mg/L	2021-10-10	
Tellurium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-10	
Thallium, dissolved	< 0.000020	N/A	0.000020	mg/L	2021-10-10	
Thorium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-10	
Tin, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-10	
Titanium, dissolved	< 0.0050	N/A	0.0050	mg/L	2021-10-10	
Tungsten, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-10	
Uranium, dissolved	0.000382	N/A	0.000020	mg/L	2021-10-10	
Vanadium, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-10	
Zinc, dissolved	< 0.0040	N/A	0.0040	mg/L	2021-10-10	
Zirconium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-10	
General Parameters						
Alkalinity, Total (as CaCO3)	155	N/A	1.0	mg/L	2021-10-08	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	N/A		mg/L	2021-10-08	
Alkalinity, Bicarbonate (as CaCO3)	155	N/A		mg/L	2021-10-08	
Alkalinity, Carbonate (as CaCO3)	< 1.0	N/A		mg/L	2021-10-08	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	N/A		mg/L	2021-10-08	
Carbon, Total Organic	1.40	N/A		mg/L	2021-10-12	
Carbon, Dissolved Organic	1.03	N/A		mg/L	2021-10-12	
	1.00	1 11/1	0.00	∌, ⊏	_U 10 12	

REPORTED TO EIK PROJECT ER

Elk River Alliance ERA-CBWM WORK ORDER REPORTED

Committee Comm	Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
Nitrogen, Total (spidahl 0.112 Ni/A 0.050 mg/L 2021-10-13 Phosphorus, Total (as P) 0.0193 Ni/A 0.0050 mg/L 2021-10-14 Ni/A 2.0 mg/L 2.0 m	LIZ003_20211003_1330 (21J0990-02)) Matrix: Water San	npled: 2021-10-03 1	3:30, Continu	ied		
Phosphorus, Total (as P)	General Parameters, Continued						
Solids, Total Suspended <2.0 N/A 2.0 mg/L 2021-10-12 HT1	Nitrogen, Total Kjeldahl	0.112	N/A	0.050	mg/L	2021-10-13	
Total Metals Aluminum, total 0.0206 OG < 0.1 0.0050 mg/L 2021-10-14 Antimony, total < 0.00020	Phosphorus, Total (as P)	0.0193	N/A	0.0050	mg/L	2021-10-14	
Aluminum, total	Solids, Total Suspended	< 2.0	N/A	2.0	mg/L	2021-10-12	HT1
Antimony, total	Total Metals						
Arsenic, total	Aluminum, total	0.0206	OG < 0.1	0.0050	mg/L	2021-10-14	
Barium, total 0.0640 MAC = 2 0.0050 mg/L 2021-10-14 Beryllium, total < 0.00010	Antimony, total	< 0.00020	MAC = 0.006	0.00020	mg/L	2021-10-14	
Beryllium, total	Arsenic, total	< 0.00050	MAC = 0.01	0.00050	mg/L	2021-10-14	
Bismuth, total	Barium, total	0.0640	MAC = 2	0.0050	mg/L	2021-10-14	
Boron, total	Beryllium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14	
Cadmium, total 0.00014 MAC = 0.005 0.000010 mg/L 2021-10-14 Calcium, total 92.1 None Required 0.20 mg/L 2021-10-14 Chromium, total < 0.00050	Bismuth, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14	
Calcium, total 92.1 None Required 0.20 mg/L 2021-10-14 Chromium, total < 0.00050	Boron, total	< 0.0500	MAC = 5	0.0500	mg/L	2021-10-14	
Chromium, total < 0.00050 MAC = 0.05 0.00050 mg/L 2021-10-14 Cobalt, total < 0.00010	Cadmium, total	0.000014	MAC = 0.005	0.000010	mg/L	2021-10-14	
Cobalt, total < 0.00010 N/A 0.00010 mg/L 2021-10-14 Copper, total 0.00049 MAC = 2 0.00040 mg/L 2021-10-14 Iron, total 0.022 AO ≤ 0.3 0.010 mg/L 2021-10-14 Lead, total 0.00022 MAC = 0.005 0.00020 mg/L 2021-10-14 Lithium, total 0.00376 N/A 0.00010 mg/L 2021-10-14 Magnesium, total 24.3 None Required 0.010 mg/L 2021-10-14 Manganese, total 0.00460 MAC = 0.12 0.00020 mg/L 2021-10-14 Mercury, total < 0.00010	Calcium, total	92.1	None Required	0.20	mg/L	2021-10-14	
Copper, total 0.00049 MAC = 2 0.00040 mg/L 2021-10-14 Iron, total 0.022 AO ≤ 0.3 0.010 mg/L 2021-10-14 Lead, total 0.00022 MAC = 0.005 0.00020 mg/L 2021-10-14 Lithium, total 0.00376 N/A 0.00010 mg/L 2021-10-14 Magnesium, total 24.3 None Required 0.010 mg/L 2021-10-14 Manganese, total 0.00460 MAC = 0.12 0.00020 mg/L 2021-10-14 Mercury, total < 0.00010	Chromium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2021-10-14	
Iron, total 0.022 AO ≤ 0.3 0.010 mg/L $2021-10-14$ Lead, total 0.00022 MAC = 0.005 0.00020 mg/L $2021-10-14$ Lithium, total 0.00376 N/A 0.00010 mg/L $2021-10-14$ Magnesium, total 24.3 None Required 0.010 mg/L $2021-10-14$ Manganese, total 0.00460 MAC = 0.12 0.00020 mg/L $2021-10-14$ Mercury, total <0.00010 MAC = 0.001 0.000010 mg/L $2021-10-13$ Molydenum, total <0.000178 N/A 0.00010 mg/L $2021-10-14$ Nikel, total <0.00040 N/A 0.00010 mg/L $2021-10-14$ Phosphorus, total <0.00040 N/A 0.00000 mg/L $2021-10-14$ Potassium, total <0.47 N/A 0.050 mg/L $2021-10-14$ Selenium, total <0.47 N/A 0.0050 mg/L $2021-10-14$ Silver, total <0.00050 MAC = 0.05 0.00050 mg/L $2021-10-14$ Silver, total <0.00050	Cobalt, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14	
Lead, total 0.00022 MAC = 0.005 0.00020 mg/L 2021-10-14 Lithium, total 0.00376 N/A 0.00010 mg/L 2021-10-14 Magnesium, total 24.3 None Required 0.010 mg/L 2021-10-14 Manganese, total 0.00460 MAC = 0.12 0.00020 mg/L 2021-10-13 Mercury, total < 0.00010	Copper, total	0.00049	MAC = 2	0.00040	mg/L	2021-10-14	
Lithium, total 0.00376 N/A 0.00010 mg/L 2021-10-14 Magnesium, total 24.3 None Required 0.010 mg/L 2021-10-14 Manganese, total 0.00460 MAC = 0.12 0.00020 mg/L 2021-10-14 Mercury, total < 0.00010	Iron, total	0.022	AO ≤ 0.3	0.010	mg/L	2021-10-14	
Magnesium, total 24.3 None Required 0.010 mg/L 2021-10-14 Manganese, total 0.00460 MAC = 0.12 0.00020 mg/L 2021-10-14 Mercury, total < 0.00010	Lead, total	0.00022	MAC = 0.005	0.00020	mg/L	2021-10-14	
Manganese, total 0.00460 MAC = 0.12 0.00020 mg/L 2021-10-14 Mercury, total < 0.000010	Lithium, total	0.00376	N/A	0.00010	mg/L	2021-10-14	
Mercury, total < 0.000010 MAC = 0.001 0.000010 mg/L 2021-10-13 Molybdenum, total 0.00178 N/A 0.00010 mg/L 2021-10-14 Nickel, total < 0.00040	Magnesium, total	24.3	None Required	0.010	mg/L	2021-10-14	
Molybdenum, total 0.00178 N/A 0.00010 mg/L 2021-10-14 Nickel, total < 0.00040	Manganese, total	0.00460	MAC = 0.12	0.00020	mg/L	2021-10-14	
Nickel, total < 0.00040 N/A 0.00040 mg/L 2021-10-14 Phosphorus, total 0.054 N/A 0.050 mg/L 2021-10-14 Potassium, total 0.47 N/A 0.10 mg/L 2021-10-14 Selenium, total < 0.00050	Mercury, total	< 0.000010	MAC = 0.001	0.000010	mg/L	2021-10-13	
Phosphorus, total 0.054 N/A 0.050 mg/L 2021-10-14 Potassium, total 0.47 N/A 0.10 mg/L 2021-10-14 Selenium, total < 0.00050	Molybdenum, total	0.00178	N/A	0.00010	mg/L	2021-10-14	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nickel, total	< 0.00040	N/A	0.00040	mg/L	2021-10-14	
Selenium, total < 0.00050 MAC = 0.05 0.00050 mg/L 2021-10-14 Silicon, total 2.9 N/A 1.0 mg/L 2021-10-14 Silver, total < 0.000050	Phosphorus, total	0.054	N/A	0.050	mg/L	2021-10-14	
Silicon, total 2.9 N/A 1.0 mg/L 2021-10-14 Silver, total < 0.000050	Potassium, total	0.47	N/A	0.10	mg/L	2021-10-14	
Silver, total < 0.000050 None Required 0.000050 mg/L 2021-10-14 Sodium, total 1.83 AO ≤ 200 0.10 mg/L 2021-10-14 Strontium, total 1.44 7 0.0010 mg/L 2021-10-14 Sulfur, total 68.7 N/A 3.0 mg/L 2021-10-14 Tellurium, total < 0.00050	Selenium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2021-10-14	
Sodium, total 1.83 AO ≤ 200 0.10 mg/L 2021-10-14 Strontium, total 1.44 7 0.0010 mg/L 2021-10-14 Sulfur, total 68.7 N/A 3.0 mg/L 2021-10-14 Tellurium, total < 0.00050	Silicon, total	2.9	N/A	1.0	mg/L	2021-10-14	
Strontium, total 1.44 7 0.0010 mg/L 2021-10-14 Sulfur, total 68.7 N/A 3.0 mg/L 2021-10-14 Tellurium, total < 0.00050	Silver, total	< 0.000050	None Required	0.000050	mg/L	2021-10-14	
Sulfur, total 68.7 N/A 3.0 mg/L 2021-10-14 Tellurium, total < 0.00050	Sodium, total	1.83	AO ≤ 200	0.10	mg/L	2021-10-14	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Strontium, total	1.44	7	0.0010	mg/L	2021-10-14	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sulfur, total	68.7	N/A	3.0	mg/L	2021-10-14	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tellurium, total	< 0.00050	N/A	0.00050	mg/L	2021-10-14	
Tin, total < 0.00020 N/A 0.00020 mg/L 2021-10-14 Titanium, total < 0.0050	Thallium, total	< 0.000020	N/A	0.000020	mg/L	2021-10-14	
Titanium, total < 0.0050 N/A 0.0050 mg/L 2021-10-14 Tungsten, total < 0.0010	Thorium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14	
Tungsten, total < 0.0010	Tin, total	< 0.00020	N/A	0.00020	mg/L	2021-10-14	
Uranium, total 0.000381 MAC = 0.02 0.000020 mg/L 2021-10-14 Vanadium, total < 0.0010	Titanium, total	< 0.0050	N/A	0.0050	mg/L	2021-10-14	
Vanadium, total < 0.0010 N/A 0.0010 mg/L 2021-10-14 Zinc, total < 0.0040	Tungsten, total	< 0.0010	N/A	0.0010	mg/L	2021-10-14	
Zinc, total < 0.0040 AO ≤ 5 0.0040 mg/L 2021-10-14	Uranium, total	0.000381	MAC = 0.02	0.000020	mg/L	2021-10-14	
	Vanadium, total	< 0.0010	N/A	0.0010	mg/L	2021-10-14	
Zirconium, total < 0.00010 N/A 0.00010 mg/L 2021-10-14	Zinc, total	< 0.0040	AO ≤ 5	0.0040	mg/L	2021-10-14	
	Zirconium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14	

REPORTED TO Elk River Alliance PROJECT ERA-CBWM

WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
MOR001_20211004_1230 (21J0990-03)	Matrix: Water Sa	mpled: 2021-10-04	12:30			
Anions						
Chloride	0.19	AO ≤ 250	0.10	mg/L	2021-10-13	
Nitrate (as N)	< 0.010	MAC = 10	0.010	mg/L	2021-10-13	HT1
Nitrite (as N)	< 0.010	MAC = 1	0.010	mg/L	2021-10-13	HT1
Phosphate (as P)	< 0.0050	N/A	0.0050		2021-10-13	HT1
Sulfate	3.8	AO ≤ 500	1.0	mg/L	2021-10-13	
BCMOE Aggregate Hydrocarbons						
EPHw10-19	< 250	N/A	250	μg/L	2021-10-13	
EPHw19-32	< 250	N/A	250		2021-10-13	
Surrogate: 2-Methylnonane (EPH/F2-4)	84	·	60-140	10	2021-10-13	
Calculated Parameters						
Hardness, Total (as CaCO3)	66.4	None Required	0.500	ma/L	N/A	
Nitrate+Nitrite (as N)	< 0.0100	N/A	0.0100		N/A	
Nitrogen, Total	0.104	N/A	0.0500		N/A	
Dissolved Metals						
Aluminum, dissolved	0.0272	N/A	0.0050	ma/l	2021-10-10	
Antimony, dissolved	< 0.0020	N/A	0.00020		2021-10-10	
Arsenic, dissolved	< 0.00050	N/A	0.00050		2021-10-10	
Barium, dissolved	0.0914	N/A	0.0050		2021-10-10	
Beryllium, dissolved	< 0.00010	N/A	0.00010		2021-10-10	
Bismuth, dissolved	< 0.00010	N/A	0.00010		2021-10-10	
Boron, dissolved	< 0.0500	N/A	0.0500		2021-10-10	
Cadmium, dissolved	0.000026	N/A	0.000010		2021-10-10	
Calcium, dissolved	18.1	N/A		mg/L	2021-10-10	
Chromium, dissolved	< 0.00050	N/A	0.00050		2021-10-10	
Cobalt, dissolved	< 0.00010	N/A	0.00010		2021-10-10	
Copper, dissolved	0.00061	N/A	0.00040		2021-10-10	
Iron, dissolved	< 0.010	N/A	0.010		2021-10-10	
Lead, dissolved	< 0.00020	N/A	0.00020		2021-10-10	
Lithium, dissolved	0.00223	N/A	0.00010		2021-10-10	
Magnesium, dissolved	5.15	N/A	0.010		2021-10-10	
Manganese, dissolved	0.00190	N/A	0.00020		2021-10-10	
Mercury, dissolved	< 0.000010	N/A	0.000010		2021-10-13	
Molybdenum, dissolved	0.00051	N/A	0.00010		2021-10-10	
Nickel, dissolved	< 0.00040	N/A	0.00040		2021-10-10	
Phosphorus, dissolved	< 0.050	N/A	0.050		2021-10-10	
Potassium, dissolved	0.37	N/A		mg/L	2021-10-10	
Selenium, dissolved	< 0.00050	N/A	0.00050		2021-10-10	
Silicon, dissolved	2.2	N/A		mg/L	2021-10-10	
Silver, dissolved	< 0.000050	N/A	0.000050		2021-10-10	
Sodium, dissolved	1.35	N/A		mg/L	2021-10-10	
Strontium, dissolved	0.0775	N/A	0.0010		2021-10-10	
				-		Page 7 of 2

REPORTED TO Elk River Alliance PROJECT ERA-CBWM

WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
MOR001_20211004_1230 (21J0990-03)	Matrix: Water Sa	mpled: 2021-10-04	12:30, Contir	nued		
Dissolved Metals, Continued						
Sulfur, dissolved	< 3.0	N/A	3.0	mg/L	2021-10-10	
Tellurium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-10	
Thallium, dissolved	< 0.000020	N/A	0.000020	mg/L	2021-10-10	
Thorium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-10	
Tin, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-10	
Titanium, dissolved	< 0.0050	N/A	0.0050	mg/L	2021-10-10	
Tungsten, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-10	
Uranium, dissolved	0.000090	N/A	0.000020	mg/L	2021-10-10	
Vanadium, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-10	
Zinc, dissolved	< 0.0040	N/A	0.0040	mg/L	2021-10-10	
Zirconium, dissolved	0.00711	N/A	0.00010	mg/L	2021-10-10	
General Parameters						
Alkalinity, Total (as CaCO3)	73.8	N/A	1.0	mg/L	2021-10-08	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	N/A		mg/L	2021-10-08	
Alkalinity, Bicarbonate (as CaCO3)	73.8	N/A		mg/L	2021-10-08	
Alkalinity, Carbonate (as CaCO3)	< 1.0	N/A		mg/L	2021-10-08	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	N/A		mg/L	2021-10-08	
Carbon, Total Organic	2.54	N/A		mg/L	2021-10-12	
Carbon, Dissolved Organic	2.37	N/A		mg/L	2021-10-12	
Nitrogen, Total Kjeldahl	0.104	N/A	0.050		2021-10-13	
Phosphorus, Total (as P)	0.0103	N/A	0.0050	mg/L	2021-10-14	
Solids, Total Suspended	< 2.0	N/A		mg/L	2021-10-12	HT1
Total Metals						
Aluminum, total	0.0253	OG < 0.1	0.0050	mg/L	2021-10-14	
Antimony, total	< 0.00020	MAC = 0.006	0.00020		2021-10-14	
Arsenic, total	< 0.00050	MAC = 0.01	0.00050	mg/L	2021-10-14	
Barium, total	0.0905	MAC = 2	0.0050		2021-10-14	
Beryllium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14	
Bismuth, total	< 0.00010	N/A	0.00010		2021-10-14	
Boron, total	< 0.0500	MAC = 5	0.0500	mg/L	2021-10-14	
Cadmium, total	< 0.000010	MAC = 0.005	0.000010	mg/L	2021-10-14	
Calcium, total	18.7	None Required	0.20	mg/L	2021-10-14	
Chromium, total	< 0.00050	MAC = 0.05	0.00050		2021-10-14	
Cobalt, total	< 0.00010	N/A	0.00010		2021-10-14	
Copper, total	0.00060	MAC = 2	0.00040	mg/L	2021-10-14	
Iron, total	0.025	AO ≤ 0.3	0.010		2021-10-14	
Lead, total	0.00023	MAC = 0.005	0.00020		2021-10-14	
Lithium, total	0.00231	N/A	0.00010		2021-10-14	
Magnesium, total	5.09	None Required	0.010		2021-10-14	
Manganese, total	0.00261	MAC = 0.12	0.00020		2021-10-14	
Mercury, total	< 0.000010	MAC = 0.001	0.000010		2021-10-13	
Molybdenum, total	0.00372	N/A	0.00010		2021-10-14	

Analyte

REPORTED TO Elk River Alliance PROJECT ERA-CBWM

WORK ORDER REPORTED

RL Units

21J0990 2021-10-14 16:07

Qualifier

Analyzed

Total Metals, Continued						
Nickel, total	0.00062	N/A	0.00040	mg/L	2021-10-14	
Phosphorus, total	< 0.050	N/A	0.050	mg/L	2021-10-14	
Potassium, total	0.34	N/A	0.10	mg/L	2021-10-14	
Selenium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2021-10-14	
Silicon, total	1.7	N/A	1.0	mg/L	2021-10-14	
Silver, total	< 0.000050	None Required	0.000050	mg/L	2021-10-14	
Sodium, total	1.36	AO ≤ 200	0.10	mg/L	2021-10-14	
Strontium, total	0.0728	7	0.0010	mg/L	2021-10-14	
Sulfur, total	4.4	N/A	3.0	mg/L	2021-10-14	
Tellurium, total	< 0.00050	N/A	0.00050	mg/L	2021-10-14	
Thallium, total	< 0.000020	N/A	0.000020	mg/L	2021-10-14	
Thorium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14	
Tin, total	< 0.00020	N/A	0.00020	mg/L	2021-10-14	
Titanium, total	< 0.0050	N/A	0.0050	mg/L	2021-10-14	
Tungsten, total	< 0.0010	N/A	0.0010	mg/L	2021-10-14	
Uranium, total	0.000081	MAC = 0.02	0.000020	mg/L	2021-10-14	
Vanadium, total	< 0.0010	N/A	0.0010	mg/L	2021-10-14	
Zinc, total	< 0.0040	AO ≤ 5	0.0040	mg/L	2021-10-14	
Zirconium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14	
	Matrix: Water Sa	mpled: 2021-10-04 (09:45	-		
nions	·				0004 40 40	
nions Chloride	0.17	AO ≤ 250	0.10	mg/L	2021-10-13	
nions Chloride Nitrate (as N)	0.17 < 0.010	AO ≤ 250 MAC = 10	0.10 0.010	mg/L	2021-10-13	
nions Chloride Nitrate (as N) Nitrite (as N)	0.17 < 0.010 < 0.010	AO ≤ 250 MAC = 10 MAC = 1	0.10 0.010 0.010	mg/L mg/L	2021-10-13 2021-10-13	HT
nions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P)	0.17 < 0.010 < 0.010 < 0.0050	AO ≤ 250 MAC = 10 MAC = 1 N/A	0.10 0.010 0.010 0.0050	mg/L mg/L mg/L	2021-10-13 2021-10-13 2021-10-13	HT
nions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate	0.17 < 0.010 < 0.010	AO ≤ 250 MAC = 10 MAC = 1	0.10 0.010 0.010 0.0050	mg/L mg/L	2021-10-13 2021-10-13	HT
nions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons	0.17 < 0.010 < 0.010 < 0.0050 1.7	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	0.10 0.010 0.010 0.0050 1.0	mg/L mg/L mg/L mg/L	2021-10-13 2021-10-13 2021-10-13 2021-10-13	HT ²
nions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons EPHw10-19	0.17 < 0.010 < 0.010 < 0.0050 1.7	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	0.10 0.010 0.010 0.0050 1.0	mg/L mg/L mg/L mg/L	2021-10-13 2021-10-13 2021-10-13 2021-10-13	HT ²
nions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons	0.17 < 0.010 < 0.010 < 0.0050 1.7 < 250 < 250	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	0.10 0.010 0.010 0.0050 1.0 250	mg/L mg/L mg/L mg/L µg/L µg/L	2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13	HT ²
nions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons EPHw10-19	0.17 < 0.010 < 0.010 < 0.0050 1.7	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	0.10 0.010 0.010 0.0050 1.0	mg/L mg/L mg/L mg/L	2021-10-13 2021-10-13 2021-10-13 2021-10-13	HT′
nions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4)	0.17 < 0.010 < 0.0050 1.7 < 250 < 250 78	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A	0.10 0.010 0.010 0.0050 1.0 250 250 60-140	mg/L mg/L mg/L mg/L µg/L µg/L %	2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13	HT ²
nions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) alculated Parameters Hardness, Total (as CaCO3)	0.17 < 0.010 < 0.0050 1.7 < 250 < 250 78	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A N/A NOR Required	0.10 0.010 0.010 0.0050 1.0 250 250 60-140	mg/L mg/L mg/L µg/L µg/L µg/L %	2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13	HT
nions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) alculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N)	0.17 < 0.010 < 0.0050 1.7 < 250 < 250 78	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A	0.10 0.010 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100	mg/L mg/L mg/L µg/L µg/L µg/L mg/L mg/L mg/L	2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 N/A N/A	HT ²
nions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N)	0.17 < 0.010 < 0.0050 1.7 < 250 < 250 78	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A N/A NOR Required	0.10 0.010 0.010 0.0050 1.0 250 250 60-140	mg/L mg/L mg/L µg/L µg/L µg/L mg/L mg/L mg/L	2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13	HT
nions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) alculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total	0.17 < 0.010 < 0.010 < 0.0050 1.7 < 250 < 250 78 31.1 < 0.0100	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A	0.10 0.010 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100	mg/L mg/L mg/L µg/L µg/L µg/L mg/L mg/L mg/L	2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 N/A N/A	HT
nions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) alculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total issolved Metals	0.17 < 0.010 < 0.010 < 0.0050 1.7 < 250 < 250 78 31.1 < 0.0100	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A	0.10 0.010 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100	mg/L mg/L mg/L mg/L µg/L µg/L % mg/L mg/L mg/L mg/L	2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 N/A N/A	HT ²
Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total Dissolved Metals Aluminum, dissolved	0.17 < 0.010 < 0.010 < 0.0050 1.7 < 250 < 250 78 31.1 < 0.0100 0.0740	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A N/A	0.10 0.010 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100 0.0500	mg/L mg/L mg/L µg/L µg/L % mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 N/A N/A N/A	HT′
Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate 3CMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32	0.17 < 0.010 < 0.010 < 0.0050 1.7 < 250 < 250 78 31.1 < 0.0100 0.0740	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A N/A N/A	0.10 0.010 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100 0.0500	mg/L mg/L mg/L µg/L µg/L % mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 2021-10-13 N/A N/A N/A N/A	HT1 HT1

Result

Guideline

REPORTED TO PROJECT

Elk River Alliance ERA-CBWM WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifie
MOR002_20211004_0945 (21J0990-04)	Matrix: Water San	npled: 2021-10-04	l 09:45, Contir	nued		
Dissolved Metals, Continued						
Beryllium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-10	
Bismuth, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-10	
Boron, dissolved	< 0.0500	N/A	0.0500	mg/L	2021-10-10	
Cadmium, dissolved	0.000023	N/A	0.000010	mg/L	2021-10-10	
Calcium, dissolved	9.04	N/A	0.20	mg/L	2021-10-10	
Chromium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-10	
Cobalt, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-10	
Copper, dissolved	0.00057	N/A	0.00040	mg/L	2021-10-10	
Iron, dissolved	0.012	N/A	0.010	mg/L	2021-10-10	
Lead, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-10	
Lithium, dissolved	0.00054	N/A	0.00010	mg/L	2021-10-10	
Magnesium, dissolved	2.07	N/A	0.010	mg/L	2021-10-10	
Manganese, dissolved	0.00077	N/A	0.00020	mg/L	2021-10-10	
Mercury, dissolved	< 0.000010	N/A	0.000010	mg/L	2021-10-13	
Molybdenum, dissolved	0.00024	N/A	0.00010	mg/L	2021-10-10	
Nickel, dissolved	< 0.00040	N/A	0.00040	mg/L	2021-10-10	
Phosphorus, dissolved	< 0.050	N/A	0.050	mg/L	2021-10-10	
Potassium, dissolved	0.31	N/A	0.10	mg/L	2021-10-10	
Selenium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-10	
Silicon, dissolved	1.9	N/A	1.0	mg/L	2021-10-10	
Silver, dissolved	< 0.000050	N/A	0.000050	mg/L	2021-10-10	
Sodium, dissolved	0.72	N/A	0.10	mg/L	2021-10-10	
Strontium, dissolved	0.0469	N/A	0.0010	mg/L	2021-10-10	
Sulfur, dissolved	< 3.0	N/A	3.0	mg/L	2021-10-10	
Tellurium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-10	
Thallium, dissolved	< 0.000020	N/A	0.000020	mg/L	2021-10-10	
Thorium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-10	
Tin, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-10	
Titanium, dissolved	< 0.0050	N/A	0.0050	mg/L	2021-10-10	
Tungsten, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-10	
Uranium, dissolved	0.000037	N/A	0.000020	mg/L	2021-10-10	
Vanadium, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-10	
Zinc, dissolved	< 0.0040	N/A	0.0040	mg/L	2021-10-10	
Zirconium, dissolved	0.00011	N/A	0.00010	mg/L	2021-10-10	
General Parameters						
Alkalinity, Total (as CaCO3)	35.8	N/A	1.0	mg/L	2021-10-08	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	N/A		mg/L	2021-10-08	
Alkalinity, Bicarbonate (as CaCO3)	35.8	N/A		mg/L	2021-10-08	
Alkalinity, Carbonate (as CaCO3)	< 1.0	N/A		mg/L	2021-10-08	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	N/A		mg/L	2021-10-08	
Carbon, Total Organic	3.67	N/A		mg/L	2021-10-12	
Carbon, Dissolved Organic	3.43	N/A		mg/L	2021-10-12	

REPORTED TO EIK I PROJECT ERA

Elk River Alliance ERA-CBWM WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
MOR002_20211004_0945 (21J0990-	04) Matrix: Water Sa	mpled: 2021-10-04	09:45, Contir	nued		
General Parameters, Continued						
Nitrogen, Total Kjeldahl	0.074	N/A	0.050	mg/L	2021-10-14	
Phosphorus, Total (as P)	0.0095	N/A	0.0050		2021-10-14	
Solids, Total Suspended	< 2.0	N/A	2.0	mg/L	2021-10-12	HT1
Total Metals						
Aluminum, total	0.0834	OG < 0.1	0.0050	mg/L	2021-10-14	
Antimony, total	< 0.00020	MAC = 0.006	0.00020	mg/L	2021-10-14	
Arsenic, total	< 0.00050	MAC = 0.01	0.00050		2021-10-14	
Barium, total	0.0819	MAC = 2	0.0050	mg/L	2021-10-14	
Beryllium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14	
Bismuth, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14	
Boron, total	< 0.0500	MAC = 5	0.0500	mg/L	2021-10-14	
Cadmium, total	0.000025	MAC = 0.005	0.000010		2021-10-14	
Calcium, total	9.50	None Required	0.20	mg/L	2021-10-14	
Chromium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2021-10-14	
Cobalt, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14	
Copper, total	0.00061	MAC = 2	0.00040	mg/L	2021-10-14	
Iron, total	0.058	AO ≤ 0.3	0.010	mg/L	2021-10-14	
Lead, total	0.00024	MAC = 0.005	0.00020	mg/L	2021-10-14	
Lithium, total	0.00066	N/A	0.00010	mg/L	2021-10-14	
Magnesium, total	2.24	None Required	0.010	mg/L	2021-10-14	
Manganese, total	0.00227	MAC = 0.12	0.00020	mg/L	2021-10-14	
Mercury, total	< 0.000010	MAC = 0.001	0.000010	mg/L	2021-10-13	
Molybdenum, total	0.00034	N/A	0.00010	mg/L	2021-10-14	
Nickel, total	0.00044	N/A	0.00040	mg/L	2021-10-14	
Phosphorus, total	< 0.050	N/A	0.050	mg/L	2021-10-14	
Potassium, total	0.32	N/A	0.10	mg/L	2021-10-14	
Selenium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2021-10-14	
Silicon, total	1.7	N/A	1.0	mg/L	2021-10-14	
Silver, total	< 0.000050	None Required	0.000050	mg/L	2021-10-14	
Sodium, total	0.82	AO ≤ 200	0.10	mg/L	2021-10-14	
Strontium, total	0.0486	7	0.0010		2021-10-14	
Sulfur, total	3.9	N/A	3.0	mg/L	2021-10-14	
Tellurium, total	< 0.00050	N/A	0.00050	mg/L	2021-10-14	
Thallium, total	< 0.000020	N/A	0.000020	mg/L	2021-10-14	
Thorium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-14	
Tin, total	< 0.00020	N/A	0.00020	mg/L	2021-10-14	
Titanium, total	< 0.0050	N/A	0.0050	mg/L	2021-10-14	
Tungsten, total	< 0.0010	N/A	0.0010	mg/L	2021-10-14	
Uranium, total	0.000050	MAC = 0.02	0.000020	mg/L	2021-10-14	
Vanadium, total	< 0.0010	N/A	0.0010	mg/L	2021-10-14	
Zinc, total	< 0.0040	AO ≤ 5	0.0040	mg/L	2021-10-14	
Zirconium, total	0.00019	N/A	0.00010	mg/L	2021-10-14	

REPORTED TO Elk River Alliance PROJECT ERA-CBWM

WORK ORDER REPORTED

Analyte	Result Guideline		RL	Units	Analyzed	Qualifier	
DUP1_20211004_0945 (21J0990-05)	Matrix: Water Sam	pled: 2021-10-04 09	9:50				
Anions							
Chloride	0.16	AO ≤ 250	0.10	mg/L	2021-10-13		
Nitrate (as N)	< 0.010	MAC = 10	0.010		2021-10-13	HT1	
Nitrite (as N)	< 0.010	MAC = 1	0.010		2021-10-13	HT1	
Phosphate (as P)	< 0.0050	N/A	0.0050		2021-10-13	HT1	
Sulfate	1.6	AO ≤ 500		mg/L	2021-10-13		
Calculated Parameters							
Hardness, Total (as CaCO3)	33.7	None Required	0.500	mg/L	N/A		
Nitrate+Nitrite (as N)	< 0.0100	N/A	0.0100	mg/L	N/A		
Nitrogen, Total	0.0710	N/A	0.0500	mg/L	N/A		
Dissolved Metals							
Aluminum, dissolved	0.0255	N/A	0.0050	mg/L	2021-10-10		
Antimony, dissolved	< 0.00020	N/A	0.00020		2021-10-10		
Arsenic, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-10		
Barium, dissolved	0.0814	N/A	0.0050		2021-10-10		
Beryllium, dissolved	< 0.00010	N/A	0.00010		2021-10-10		
Bismuth, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-10		
Boron, dissolved	< 0.0500	N/A	0.0500		2021-10-10		
Cadmium, dissolved	0.000029	N/A	0.000010	mg/L	2021-10-10		
Calcium, dissolved	9.84	N/A	0.20	mg/L	2021-10-10		
Chromium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-10		
Cobalt, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-10		
Copper, dissolved	0.00060	N/A	0.00040	mg/L	2021-10-10		
Iron, dissolved	0.014	N/A	0.010	mg/L	2021-10-10		
Lead, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-10		
Lithium, dissolved	0.00058	N/A	0.00010	mg/L	2021-10-10		
Magnesium, dissolved	2.21	N/A	0.010	mg/L	2021-10-10		
Manganese, dissolved	0.00086	N/A	0.00020	mg/L	2021-10-10		
Mercury, dissolved	< 0.000010	N/A	0.000010	mg/L	2021-10-13		
Molybdenum, dissolved	0.00031	N/A	0.00010	mg/L	2021-10-10		
Nickel, dissolved	< 0.00040	N/A	0.00040	mg/L	2021-10-10		
Phosphorus, dissolved	< 0.050	N/A	0.050	mg/L	2021-10-10		
Potassium, dissolved	0.32	N/A	0.10	mg/L	2021-10-10		
Selenium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-10		
Silicon, dissolved	2.0	N/A	1.0	mg/L	2021-10-10		
Silver, dissolved	< 0.000050	N/A	0.000050	mg/L	2021-10-10		
Sodium, dissolved	0.78	N/A	0.10	mg/L	2021-10-10		
Strontium, dissolved	0.0486	N/A	0.0010	mg/L	2021-10-10		
Sulfur, dissolved	< 3.0	N/A	3.0	mg/L	2021-10-10		
Tellurium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-10		
Thallium, dissolved	< 0.000020	N/A	0.000020	mg/L	2021-10-10		
Thorium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-10		
Tin, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-10	Page 12 of 27	

REPORTED TO Elk River Alliance PROJECT ERA-CBWM

WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed Qua	lifie
	trix: Water Samp	led: 2021-10-04 09	:50, Continue	ed		
Dissolved Metals, Continued						
Titanium, dissolved	< 0.0050	N/A	0.0050	mg/L	2021-10-10	
Tungsten, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-10	
Uranium, dissolved	0.000040	N/A	0.000020	mg/L	2021-10-10	
Vanadium, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-10	
Zinc, dissolved	< 0.0040	N/A	0.0040	mg/L	2021-10-10	
Zirconium, dissolved	0.00013	N/A	0.00010	mg/L	2021-10-10	
General Parameters						
Alkalinity, Total (as CaCO3)	36.1	N/A	1.0	mg/L	2021-10-08	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	N/A	1.0	mg/L	2021-10-08	
Alkalinity, Bicarbonate (as CaCO3)	36.1	N/A		mg/L	2021-10-08	
Alkalinity, Carbonate (as CaCO3)	< 1.0	N/A		mg/L	2021-10-08	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	N/A		mg/L	2021-10-08	
Carbon, Total Organic	3.72	N/A		mg/L	2021-10-12	
Carbon, Dissolved Organic	3.52	N/A		mg/L	2021-10-12	
Nitrogen, Total Kjeldahl	0.071	N/A	0.050	mg/L	2021-10-14	
Phosphorus, Total (as P)	0.0079	N/A	0.0050	mg/L	2021-10-14	
Solids, Total Suspended	< 2.0	N/A		mg/L	2021-10-12 H	T1
Total Metals						
Aluminum, total	0.0828	OG < 0.1	0.0050		2021-10-14	
Antimony, total	< 0.00020	MAC = 0.006	0.00020		2021-10-14	
Arsenic, total	< 0.00050	MAC = 0.01	0.00050		2021-10-14	
Barium, total	0.0851	MAC = 2	0.0050		2021-10-14	
Beryllium, total	< 0.00010	N/A	0.00010		2021-10-14	
Bismuth, total	< 0.00010	N/A	0.00010		2021-10-14	
Boron, total	< 0.0500	MAC = 5	0.0500		2021-10-14	
Cadmium, total	0.000025	MAC = 0.005	0.000010		2021-10-14	
Calcium, total	9.78	None Required		mg/L	2021-10-14	
Chromium, total	< 0.00050	MAC = 0.05	0.00050		2021-10-14	
Cobalt, total	< 0.00010	N/A	0.00010		2021-10-14	
Copper, total	0.00087	MAC = 2	0.00040		2021-10-14	
Iron, total	0.051	AO ≤ 0.3	0.010		2021-10-14	
Lead, total	0.00023	MAC = 0.005	0.00020		2021-10-14	
Lithium, total	0.00069	N/A	0.00010		2021-10-14	
Magnesium, total	2.39	None Required	0.010		2021-10-14	
Manganese, total	0.00162	MAC = 0.12	0.00020		2021-10-14	
Mercury, total	< 0.000010	MAC = 0.001	0.000010		2021-10-13	
Molybdenum, total	0.00035	N/A	0.00010		2021-10-14	
Nickel, total	0.00043	N/A	0.00040		2021-10-14	
Phosphorus, total	< 0.050	N/A	0.050		2021-10-14	
Potassium, total	0.34	N/A		mg/L	2021-10-14	
Selenium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2021-10-14	
Silicon, total	1.8	N/A	1.0	mg/L	2021-10-14 Page 1	

REPORTED TO EI

Elk River Alliance ERA-CBWM WORK ORDER REPORTED

21J0990 2021-10-14 16:07

Analyte Result Guideline RL Units Analyzed Qualifier

DUP1_20211004_0945 (21J0990-05) | Matrix: Water | Sampled: 2021-10-04 09:50, Continued

otal Metals, Continued				
Silver, total	< 0.000050	None Required	0.000050 mg/	L 2021-10-14
Sodium, total	0.85	AO ≤ 200	0.10 mg/	L 2021-10-14
Strontium, total	0.0491	7	0.0010 mg/	L 2021-10-14
Sulfur, total	3.8	N/A	3.0 mg/	L 2021-10-14
Tellurium, total	< 0.00050	N/A	0.00050 mg/	L 2021-10-14
Thallium, total	< 0.000020	N/A	0.000020 mg/	L 2021-10-14
Thorium, total	< 0.00010	N/A	0.00010 mg/	L 2021-10-14
Tin, total	< 0.00020	N/A	0.00020 mg/	L 2021-10-14
Titanium, total	< 0.0050	N/A	0.0050 mg/	L 2021-10-14
Tungsten, total	< 0.0010	N/A	0.0010 mg/	L 2021-10-14
Uranium, total	0.000046	MAC = 0.02	0.000020 mg/	L 2021-10-14
Vanadium, total	< 0.0010	N/A	0.0010 mg/	L 2021-10-14
Zinc, total	< 0.0040	AO ≤ 5	0.0040 mg/	L 2021-10-14
Zirconium, total	0.00018	N/A	0.00010 mg/	L 2021-10-14

Sample Qualifiers:

HT1 The sample was prepared and/or analyzed past the recommended holding time.

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Elk River Alliance
PROJECT ERA-CBWM

WORK ORDER
REPORTED

21J0990 2021-10-14 16:07

Analysis Description	Method Ref.	Technique A	ccredited	Location
Alkalinity in Water	SM 2320 B* (2017)	Titration with H2SO4	✓	Kelowna
Anions in Water	SM 4110 B (2017)	Ion Chromatography	✓	Kelowna
Carbon, Dissolved Organic in Water	SM 5310 B (2017)	Combustion, Infrared CO2 Detection	✓	Kelowna
Carbon, Total Organic in Water	SM 5310 B (2017)	Combustion, Infrared CO2 Detection	✓	Kelowna
Dissolved Metals in Water	EPA 200.8 / EPA 6020B	0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	✓	Richmond
EPH in Water	EPA 3511* / BCMOE EPHw	Hexane MicroExtraction (Base/Neutral) / Gas Chromatography (GC-FID)	✓	Richmond
Hardness in Water	SM 2340 B (2017)	Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]	✓	N/A
Mercury, dissolved in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	✓	Richmond
Mercury, total in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	✓	Richmond
Nitrogen, Total Kjeldahl in Water	SM 4500-Norg D* (2017)	Block Digestion and Flow Injection Analysis	✓	Kelowna
Phosphorus, Total in Water	SM 4500-P B.5* (2011) / SM 4500-P F (2017)	Persulfate Digestion / Automated Colorimetry (Ascorbic Ad	oid) ✓	Kelowna
Solids, Total Suspended in Water	SM 2540 D* (2017)	Gravimetry (Dried at 103-105C)	✓	Kelowna
Total Metals in Water	EPA 200.2 / EPA 6020B	HNO3+HCl Hot Block Digestion / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	✓	Richmond

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL Reporting Limit (default)

Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

AO Aesthetic Objective

MAC Maximum Acceptable Concentration (health based)

mg/L Milligrams per litre

OG Operational Guideline (treated water)

μg/L Micrograms per litre

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

Guidelines Referenced in this Report:

Guidelines for Canadian Drinking Water Quality (Health Canada, June 2019)

Note: In some cases, the values displayed on the report represent the lowest guideline and are to be verified by the end user

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO PROJECT

Elk River Alliance ERA-CBWM WORK ORDER REPORTED 21J0990 2021-10-14 16:07

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued or once samples expire, whichever comes first. Longer hold is possible if agreed to in writing.

Results in **Bold** indicate values that are above CARO's method reporting limits. Any results that are above regulatory limits are highlighted **red**. Please note that results will only be highlighted red if the regulatory limits are included on the CARO report. Any Bold and/or highlighted results do <u>not</u> take into account method uncertainty. If you would like method uncertainty or regulatory limits to be included on your report, please contact your Account Manager:teamcaro@caro.ca

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline(s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO PROJECT

Elk River Alliance ERA-CBWM WORK ORDER REPORTED

21J0990 2021-10-14 16:07

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method
 blank results are used to assess contamination from the laboratory environment and reagents.
- **Duplicate (Dup)**: An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed.
 Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Anions, Batch B1J0936									
Blank (B1J0936-BLK1)			Prepared	d: 2021-10-1	3, Analyze	d: 2021-	10-13		
Chloride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Phosphate (as P)	< 0.0050	0.0050 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B1J0936-BLK2)			Prepared	d: 2021-10- 1	3, Analyze	d: 2021-	10-13		
Chloride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Phosphate (as P)	< 0.0050	0.0050 mg/L							
Sulfate	< 1.0	1.0 mg/L							
LCS (B1J0936-BS1)			Prepared	d: 2021-10- 1	3, Analyze	d: 2021-	10-13		
Chloride	15.9	0.10 mg/L	16.0		100	90-110			
Nitrate (as N)	4.08	0.010 mg/L	4.00		102	90-110			
Nitrite (as N)	2.04	0.010 mg/L	2.00		102	85-115			
Phosphate (as P)	0.994	0.0050 mg/L	1.00		99	80-120			
Sulfate	16.2	1.0 mg/L	16.0		101	90-110			
LCS (B1J0936-BS2)			Prepared	d: 2021-10- 1	3, Analyze	d: 2021-	10-13		
Chloride	15.9	0.10 mg/L	16.0		99	90-110			
Nitrate (as N)	4.10	0.010 mg/L	4.00		102	90-110			
Nitrite (as N)	2.01	0.010 mg/L	2.00		100	85-115			
Phosphate (as P)	1.00	0.0050 mg/L	1.00		100	80-120			
Sulfate	16.2	1.0 mg/L	16.0		101	90-110			

BCMOE Aggregate Hydrocarbons, Batch B1J1307

Blank (B1J1307-BLK1)	Prepared: 2021-10-13, Analyzed: 2021-10-13						
EPHw10-19	< 250	250 μg/L					
EPHw19-32	< 250	250 µg/L					
Surrogate: 2-Methylnonane (EPH/F2-4)	1400	μg/L	1620	87	60-140		
LCS (B1J1307-BS2)			Prepared: 202	1-10-13, Analyze	ed: 2021-10-13		
EPHw10-19	15700	250 μg/L	15400	102	70-130		
							4 - 60

Analyte

APPENDIX 2: QUALITY CONTROL RESULTS

Result

REPORTED TO	Elk River Alliance	WORK ORDER	21J0990 \
PROJECT	ERA-CBWM	REPORTED	2021-10-14 16:07

RL Units

Spike

Source

Analyte	Result	RL Units	Level	Result	% REC	Limit	% RPD	Limit	Qualifie
BCMOE Aggregate Hydrocarbons, Ba	tch B1J1307, Co	ntinued							
LCS (B1J1307-BS2), Continued			Prepared	I: 2021-10-1	I3, Analyze	d: 2021-1	10-13		
EPHw19-32	22300	250 µg/L	22100		101	70-130			
Surrogate: 2-Methylnonane (EPH/F2-4)	1040	μg/L	1620		64	60-140			
LCS Dup (B1J1307-BSD2)		· -	Prepared	I: 2021-10-1	I3, Analyze	d: 2021-1	10-13		
EPHw10-19	16700	250 µg/L	15400		108	70-130	6	20	
EPHw19-32	23600	250 μg/L	22100		107	70-130	6	20	
Surrogate: 2-Methylnonane (EPH/F2-4)	1080	μg/L	1620		67	60-140	-		
Dissolved Metals, Batch B1J1143									
Blank (B1J1143-BLK1)			Prepared	I: 2021-10-1	I0, Analyze	d: 2021-1	10-10		
Aluminum, dissolved	< 0.0050	0.0050 mg/L			-				
Antimony, dissolved	< 0.00020	0.00020 mg/L							
Arsenic, dissolved	< 0.00050	0.00050 mg/L							
Barium, dissolved	< 0.0050	0.0050 mg/L							
Beryllium, dissolved	< 0.00010	0.00010 mg/L							
Bismuth, dissolved	< 0.00010	0.00010 mg/L							
Boron, dissolved	< 0.0500	0.0500 mg/L							
Cadmium, dissolved	< 0.000010	0.000010 mg/L							
Calcium, dissolved, dissolved	< 0.20	0.20 mg/L							
Chromium, dissolved	< 0.00050	0.00050 mg/L							
Cobalt, dissolved	< 0.00010	0.00010 mg/L							
Copper, dissolved	< 0.00040	0.00040 mg/L							
Iron, dissolved	< 0.010	0.010 mg/L							
Lead, dissolved	< 0.00020	0.00020 mg/L							
Lithium, dissolved	< 0.00010	0.00010 mg/L							
Magnesium, dissolved, dissolved	< 0.010	0.010 mg/L							
Manganese, dissolved	< 0.00020	0.00020 mg/L							
Molybdenum, dissolved	< 0.00010	0.00010 mg/L							
Nickel, dissolved	< 0.00040	0.00040 mg/L							
Phosphorus, dissolved	< 0.050	0.050 mg/L							
Potassium, dissolved	< 0.10	0.10 mg/L							
Selenium, dissolved	< 0.00050	0.00050 mg/L							
Silicon, dissolved	< 1.0	1.0 mg/L							
Silver, dissolved	< 0.000050	0.000050 mg/L							
Sodium, dissolved	< 0.10	0.10 mg/L							
Strontium, dissolved	< 0.0010	0.0010 mg/L							
Sulfur, dissolved	< 3.0	3.0 mg/L							
Tellurium, dissolved	< 0.00050	0.00050 mg/L							
Thallium, dissolved	< 0.00030	0.00000 mg/L							
Thorium, dissolved	< 0.00010	0.000020 Hig/L							
Tin, dissolved	< 0.00010	0.00010 mg/L							
Titanium, dissolved	< 0.0050	0.00020 mg/L 0.0050 mg/L							
Tungsten, dissolved	< 0.0030	0.0030 mg/L							
Uranium, dissolved	< 0.000020	0.0000 mg/L							
Vanadium, dissolved	< 0.00020	0.000020 Hig/L 0.0010 mg/L							
Zinc, dissolved	< 0.0010	0.0010 mg/L							
Zirconium, dissolved	< 0.0040	0.0040 mg/L 0.00010 mg/L							
LCS (B1J1143-BS1)	3.00010	0.000 to mg/L	Prenared	I: 2021-10-1	IN Analyza	d∙ 2021-1	10-10		
,	0.0225	0.0050 ma/l	•	. 2021-10-			10-10		
Aluminum, dissolved	0.0225	0.0050 mg/L	0.0200		113	80-120			
Antimony, dissolved	0.0192	0.00020 mg/L	0.0200		96	80-120			
Arsenic, dissolved	0.0193	0.00050 mg/L	0.0200		97	80-120			
Barium, dissolved	0.0192	0.0050 mg/L	0.0200		96	80-120			
Beryllium, dissolved	0.0202	0.00010 mg/L	0.0200		101	80-120			
Bismuth, dissolved	0.0199	0.00010 mg/L	0.0200		99	80-120		_	40 -1

% RPD RPD

Qualifier

REC

% REC

REPORTED TO	Elk River Alliance	WORK ORDER	21J0990 \
PROJECT	ERA-CBWM	REPORTED	2021-10-14 16:07

Analyte	Result	RL Units	Spike Level	Source % Result	REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals, Batch B1J1143, Continu	ıed								
LCS (B1J1143-BS1), Continued			Prepared	: 2021-10-10, Aı	nalyzed	d: 2021-1	10-10		
Boron, dissolved	< 0.0500	0.0500 mg/L	0.0200	,	111	80-120			
Cadmium, dissolved	0.0190	0.000010 mg/L	0.0200		95	80-120			
Calcium, dissolved, dissolved	2.02	0.20 mg/L	2.00	1	101	80-120			
Chromium, dissolved	0.0192	0.00050 mg/L	0.0200	!	96	80-120			
Cobalt, dissolved	0.0193	0.00010 mg/L	0.0200	!	96	80-120			
Copper, dissolved	0.0186	0.00040 mg/L	0.0200		93	80-120			
Iron, dissolved	1.83	0.010 mg/L	2.00	!	92	80-120			
Lead, dissolved	0.0215	0.00020 mg/L	0.0200		108	80-120			
Lithium, dissolved	0.0205	0.00010 mg/L	0.0200		102	80-120			
Magnesium, dissolved, dissolved	2.12	0.010 mg/L	2.00		106	80-120			
Manganese, dissolved	0.0184	0.00020 mg/L	0.0200		92	80-120			
Molybdenum, dissolved	0.0196	0.00010 mg/L	0.0200		98	80-120			
Nickel, dissolved	0.0195	0.00040 mg/L	0.0200		97	80-120			
Phosphorus, dissolved	1.92	0.050 mg/L	2.00		96	80-120			
Potassium, dissolved	1.95	0.10 mg/L	2.00		98	80-120			
Selenium, dissolved	0.0218	0.00050 mg/L	2.00		109 114	80-120 80-120			
Silicon, dissolved	0.0189	1.0 mg/L 0.000050 mg/L	0.0200		94	80-120			
Silver, dissolved Sodium, dissolved	2.03	0.000030 Hig/L 0.10 mg/L	2.00		101	80-120			
Strontium, dissolved	0.0198	0.0010 mg/L	0.0200		99	80-120			
Sulfur, dissolved	5.1	3.0 mg/L	5.00		102	80-120			
Tellurium, dissolved	0.0211	0.00050 mg/L	0.0200		106	80-120			
Thallium, dissolved	0.0189	0.000000 mg/L	0.0200		95	80-120			
Thorium, dissolved	0.0182	0.000020 mg/L	0.0200		91	80-120			
Tin, dissolved	0.0206	0.00020 mg/L	0.0200		103	80-120			
Titanium, dissolved	0.0222	0.0050 mg/L	0.0200		111	80-120			
Tungsten, dissolved	0.0193	0.0010 mg/L	0.0200		96	80-120			
Uranium, dissolved	0.0188	0.000020 mg/L	0.0200		94	80-120			
Vanadium, dissolved	0.0178	0.0010 mg/L	0.0200		89	80-120			
Zinc, dissolved	0.0204	0.0040 mg/L	0.0200	1	102	80-120			
Zirconium, dissolved	0.0199	0.00010 mg/L	0.0200	1	100	80-120			
Reference (B1J1143-SRM1)			Prepared	: 2021-10-10, Aı	nalyzed	d: 2021-	10-10		
Aluminum, dissolved	0.207	0.0050 mg/L	0.235		88	70-130			_
Antimony, dissolved	0.0434	0.00020 mg/L	0.0431	1	101	70-130			
Arsenic, dissolved	0.432	0.00050 mg/L	0.423	1	102	70-130			
Barium, dissolved	2.95	0.0050 mg/L	3.30		89	70-130			
Beryllium, dissolved	0.205	0.00010 mg/L	0.209		98	70-130			
Boron, dissolved	1.61	0.0500 mg/L	1.65		98	70-130			
Cadmium, dissolved	0.211	0.000010 mg/L	0.221		95	70-130			
Calcium, dissolved, dissolved	7.50	0.20 mg/L	7.72		97	70-130			
Chromium, dissolved	0.413	0.00050 mg/L	0.434		95	70-130			
Cobalt, dissolved	0.121	0.00010 mg/L	0.124		98	70-130			
Copper, dissolved	0.755	0.00040 mg/L	0.815		93	70-130			
Iron, dissolved	1.17	0.010 mg/L	1.27		92	70-130			
Lead, dissolved	0.116	0.00020 mg/L	0.110		105	70-130			
Lithium, dissolved	0.100	0.00010 mg/L	0.100		100	70-130			
Magnesium, dissolved, dissolved	6.90	0.010 mg/L	6.59		105	70-130			
Manganese, dissolved	0.310	0.00020 mg/L	0.342		91	70-130			
Molybdenum, dissolved	0.398	0.00010 mg/L	0.404		98	70-130			
Nickel, dissolved	0.815	0.00040 mg/L	0.835		98	70-130			
Phosphorus, dissolved	0.519	0.050 mg/L	0.499		104	70-130			
Potassium, dissolved	2.91	0.10 mg/L	2.88		101 06	70-130			
Selenium, dissolved	0.0311	0.00050 mg/L	0.0324		96 95	70-130 70-130			
Sodium, dissolved Strontium, dissolved	0.861	0.10 mg/L 0.0010 mg/L	18.0 0.935		95 92	70-130			
Guonium, uissoiveu	0.001	0.0010 IIIg/L	0.835		JZ	10-130			

REPORTED TO Elk River Alliance					WORK	ORDER	21J0	990 🚿	ý.
PROJECT ERA-CBWM					REPOR	TED	2021	I-10-14	16:07
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals, Batch B1J1143, Contin	nued								
Reference (B1J1143-SRM1), Continued			Prepared	l: 2021-10-1	0, Analyze	d: 2021-1	0-10		
Thallium, dissolved	0.0365	0.000020 mg/L	0.0385		95	70-130			
Uranium, dissolved	0.232	0.000020 mg/L	0.258		90	70-130			
Vanadium, dissolved	0.810	0.0010 mg/L	0.873		93	70-130 70-130			
Zinc, dissolved	0.900	0.0040 mg/L	0.848		106	70-130			
Dissolved Metals, Batch B1J1318									
Blank (B1J1318-BLK1)			Prepared	l: 2021-10-1	3, Analyze	d: 2021-1	0-13		
Mercury, dissolved	< 0.000010	0.000010 mg/L							
Blank (B1J1318-BLK2)			Prepared	l: 2021-10-1	3, Analyze	d: 2021-1	0-13		
Mercury, dissolved	< 0.000010	0.000010 mg/L							
Blank (B1J1318-BLK3)			Prepared	l: 2021-10-1	3. Analyze	d: 2021-1	0-13		
Mercury, dissolved	< 0.000010	0.000010 mg/L		0	0,7				
Reference (B1J1318-SRM1)			Prenared	l: 2021-10-1	3 Analyze	d· 2021 - 1	0-13		
Mercury, dissolved	0.00694	0.000010 mg/L	0.00581	. 2021 10 1	120	70-130	0 10		
Reference (B1J1318-SRM2)	0.0000	0.000010g/_		l: 2021-10-1			0-13		
Mercury, dissolved	0.00587	0.000010 mg/L	0.00581	1. 202 1-10-1	101	70-130	0-13		
	0.00001	0.000010 Hig/L		. 2024 40 4			0.12		
Reference (B1J1318-SRM3) Mercury, dissolved	0.00563	0.000010 mg/L	0.00581	l: 2021-10-1	3, Analyze	70-130	0-13		
General Parameters, Batch B1J0918 Blank (B1J0918-BLK1)			Prepared	l: 2021-10-1	2, Analyze	d: 2021-1	0-12		
Carbon, Total Organic	< 0.50	0.50 mg/L							
Carbon, Dissolved Organic	< 0.50	0.50 mg/L							
Blank (B1J0918-BLK2)			Prepared	l: 2021-10-1	2, Analyze	d: 2021-1	0-12		
Carbon, Total Organic	< 0.50	0.50 mg/L							
Carbon, Dissolved Organic	< 0.50	0.50 mg/L							
Blank (B1J0918-BLK3)			Prepared	l: 2021-10-1	2, Analyze	d: 2021-1	0-12		
Carbon, Total Organic	< 0.50	0.50 mg/L							
Carbon, Dissolved Organic	< 0.50	0.50 mg/L							
LCS (B1J0918-BS1)				l: 2021-10-1			0-12		
Carbon, Total Organic Carbon, Dissolved Organic	9.60 9.84	0.50 mg/L 0.50 mg/L	10.0		96 98	78-116 78-116			
LCS (B1J0918-BS2)	3.04	0.30 Hig/L		l: 2021-10-1			0-12		
Carbon, Total Organic	9.32	0.50 mg/L	10.0		93	78-116			
Carbon, Dissolved Organic	9.32	0.50 mg/L	10.0		93	78-116			
LCS (B1J0918-BS3)			Prepared	l: 2021-10-1	2, Analyze	d: 2021-1	0-12		
Carbon, Total Organic	9.42	0.50 mg/L	10.0		94	78-116			
Carbon, Dissolved Organic	9.34	0.50 mg/L	10.0		93	78-116			
Duplicate (B1J0918-DUP3)		ource: 21J0990-05	Prepared	1: 2021-10-1	2, Analyze	d: 2021-1			
Carbon, Total Organic Carbon, Dissolved Organic	3.79 3.60	0.50 mg/L 0.50 mg/L		3.72 3.52			2	16 15	
			Dropored		2 Analys	4. 2024 4		10	
Matrix Spike (B1J0918-MS3) Carbon, Total Organic	11.9	0.50 mg/L	10.0	l: 2021-10-1 3.72	2, Analyze 81	70-130	U- 12		
		,g/=		-	<u> </u>			Pa	ge 20 of 2

REPORTED TO Elk River Alliance						ORDER			<u> </u>		
PROJECT ERA-CBWM					REPOR	2021	2021-10-14 16:07				
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier		
General Parameters, Batch B1J0918, Cont.	inued										
Matrix Spike (B1J0918-MS3), Continued	Sou	rce: 21J0990-05	Prepared	l: 2021-10-	12, Analyze	d: 2021-	10-12				
Carbon, Dissolved Organic	11.8	0.50 mg/L	10.0	3.52	83	70-130					
General Parameters, Batch B1J0984											
Blank (B1J0984-BLK1)			Prepared	l: 2021-10-0	08, Analyze	d: 2021-	10-08				
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L									
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L									
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	1.0 mg/L									
Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0 mg/L									
Alkalifility, Hydroxide (as CaCO3)	< 1.0	1.0 mg/L									
Blank (B1J0984-BLK2)			Prepared	l: 2021-10-0	08, Analyze	d: 2021-	10-08				
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L									
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L									
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	1.0 mg/L									
Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3)	< 1.0 < 1.0	1.0 mg/L 1.0 mg/L									
	1.0	1.0 mg/L									
Blank (B1J0984-BLK3)			Prepared	l: 2021-10-0	08, Analyze	d: 2021-	10-08				
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L									
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L									
Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3)	< 1.0 < 1.0	1.0 mg/L 1.0 mg/L									
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0 mg/L									
LCS (B1J0984-BS1)		- J	Prepared	l: 2021-10-0	08, Analyze	d: 2021-	10-08				
Alkalinity, Total (as CaCO3)	107	1.0 mg/L	100		107	80-120					
LCS (B1J0984-BS2)		g,		· 2021-10-0	08, Analyze		10-08				
Alkalinity, Total (as CaCO3)	107	1.0 mg/L	100	1. 2021-10-0	107	80-120	10-00				
	107	1.0 mg/L		. 2021 10 (10.00				
LCS (B1J0984-BS3) Alkalinity, Total (as CaCO3)	108	1.0 mg/L	100	1: 2021-10-0	08, Analyze 108	80-120	10-08				
		g/L	100		100	00 120					
General Parameters, Batch B1J1173 Blank (B1J1173-BLK1)			Prenared	l· 2021_10	11, Analyze	d: 2021-	10_13				
Nitrogen, Total Kjeldahl	< 0.050	0.050 mg/L	Ticparcu	1. 2021-10-	ii, Allalyzc	u. 2021-	10-10				
Blank (B1J1173-BLK2)	- 0.000	0.000 mg/L	Prenared	· 2021_10	11, Analyze	4· 2021-	10-13				
Nitrogen, Total Kjeldahl	< 0.050	0.050 mg/L	Tioparou	1. 2021 10	11,711141920	u. 2021	10 10				
LCS (B1J1173-BS1)	- 0.000	0.000 mg/L	Prepared	· 2021_10_	11, Analyze	d. 2021-	10_13				
Nitrogen, Total Kjeldahl	1.12	0.050 mg/L	1.00	1. 2021-10-	112	85-115	10-13				
	1.12	0.030 Hig/L		. 0004 40			10.40				
LCS (B1J1173-BS2)				1: 2021-10-	11, Analyze		10-13				
Nitrogen, Total Kjeldahl Coneral Parameters - Ratch P4 11330	1.12	0.050 mg/L	1.00		112	85-115					
General Parameters, Batch B1J1220			D	. 0004 40	10 4 1	J. 0004	10.40				
Blank (B1J1220-BLK1)			Prepared	: 2021-10-	12, Analyze	a: 2021-	10-12				
Solids, Total Suspended	< 2.0	2.0 mg/L									
LCS (B1J1220-BS1)			Prepared	: 2021-10-	12, Analyze	d: 2021-	10-12				
Solids, Total Suspended	91.5	5.0 mg/L	100		92	85-115					

Strontium, total

Tellurium, total

Sulfur, total

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO	Elk River Alliance	WORK ORDER	21J0990 \
PROJECT	ERA-CBWM	REPORTED	2021-10-14 16:07

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameters, Batch B1J1260									
Blank (B1J1260-BLK1)			Prepared	: 2021-10-1	2. Analvze	d: 2021-	10-14		
Nitrogen, Total Kjeldahl	< 0.050	0.050 mg/L	<u>'</u>		, ,				
			D	. 0004 40 4	0. 4 1	-1- 0004	10.44		
Blank (B1J1260-BLK2)			Prepared	: 2021-10-1	2, Analyze	a: 2021-	10-14		
Nitrogen, Total Kjeldahl	< 0.050	0.050 mg/L							
LCS (B1J1260-BS1)			Prepared	: 2021-10-1	2, Analyze	d: 2021-	10-14		
Nitrogen, Total Kjeldahl	0.993	0.050 mg/L	1.00		99	85-115			
LCS (B1J1260-BS2)			Prepared	: 2021-10-1	2, Analyze	d: 2021-	10-14		
Nitrogen, Total Kjeldahl	0.969	0.050 mg/L	1.00		97	85-115			
General Parameters, Batch B1J1435			Dranarad	. 2024 40 4	4 Analyza	الم 2024	10 14		
Blank (B1J1435-BLK1)	0.0050	0.0050 #	Prepared	: 2021-10-1	4, Analyze	u. 2021-	10-14		
Phosphorus, Total (as P)	< 0.0050	0.0050 mg/L							
Blank (B1J1435-BLK2)			Prepared	: 2021-10-1	4, Analyze	d: 2021-	10-14		
Phosphorus, Total (as P)	< 0.0050	0.0050 mg/L							
LCS (B1J1435-BS1)			Prepared	: 2021-10-1	4, Analyze	d: 2021-	10-14		
Phosphorus, Total (as P)	0.0988	0.0050 mg/L	0.100		99	85-115			
LCS (B1J1435-BS2)		-	Prepared	: 2021-10-1	4 Analyze	d: 2021-	10-14		
Phosphorus, Total (as P)	0.101	0.0050 mg/L	0.100		101	85-115			
Blank (B1J1202-BLK1)			Prepared	: 2021-10-1	2, Analyze	d: 2021-	10-14		
Aluminum, total	< 0.0050	0.0050 mg/L							
Antimony, total	< 0.00020	0.00020 mg/L							
Arsenic, total	< 0.00050	0.00050 mg/L							
Barium, total Beryllium, total	< 0.0050 < 0.00010	0.0050 mg/L 0.00010 mg/L							
Bismuth, total	< 0.00010	0.00010 mg/L							
Boron, total	< 0.0500	0.0500 mg/L							
Cadmium, total	< 0.000010	0.000010 mg/L							
Calcium, total	< 0.20	0.20 mg/L							
Chromium, total	< 0.00050	0.00050 mg/L							
Cobalt, total	< 0.00010	0.00010 mg/L							
Copper, total	< 0.00040 < 0.010	0.00040 mg/L 0.010 mg/L							
Lead, total	< 0.00020	0.00020 mg/L							
Lithium, total	< 0.00010	0.00010 mg/L							
Magnesium, total	< 0.010	0.010 mg/L							
Manganese, total	< 0.00020	0.00020 mg/L							
Molybdenum, total	< 0.00010	0.00010 mg/L							
Nickel, total	< 0.00040	0.00040 mg/L							
Phosphorus, total	< 0.050	0.050 mg/L							
Potassium, total	< 0.10	0.10 mg/L							
Selenium, total	< 0.00050	0.00050 mg/L							
Silicon, total	< 1.0	1.0 mg/L							
Silver, total Sodium, total	< 0.000050 < 0.10	0.000050 mg/L 0.10 mg/L							
Strontium total	< 0.10	0.10 mg/L							

0.0010 mg/L

0.00050 mg/L

3.0 mg/L

< 0.0010

< 0.00050

< 3.0

REPORTED TO PROJECT	Elk River Alliance ERA-CBWM									21J0990 2021-10-14 16:07		
Analyte		Result	RL	Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier	
Total Metals, Batch	B1J1202, Continued											
Blank (B1J1202-Bl	-K1), Continued				Prepared	l: 2021-10-1	2, Analyze	d: 2021-1	0-14			
Thallium, total		< 0.000020	0.000020									
Thorium, total		< 0.00010	0.00010									
Tin, total		< 0.00020	0.00020									
Titanium, total		< 0.0050	0.0050									
Tungsten, total Uranium, total		< 0.0010 < 0.000020	0.0010 0.000020									
Vanadium, total		< 0.000020	0.00020									
Zinc, total		< 0.0040	0.0040									
Zirconium, total		< 0.00010	0.00010									
Blank (B1J1202-Bl	K2)				Prepared	l: 2021-10-1	12 Analyze	d· 2021-1	0-14			
Aluminum, total	-112)	< 0.0050	0.0050	ma/l	1 Toparoa	2021 10 1	, 7 a lary 20	G. 2021 1				
Antimony, total		< 0.00020	0.00020									
Arsenic, total		< 0.00050	0.00050									
Barium, total		< 0.0050	0.0050									
Beryllium, total		< 0.00010	0.00010	mg/L								
Bismuth, total		< 0.00010	0.00010									
Boron, total		< 0.0500	0.0500									
Cadmium, total		< 0.000010	0.000010									
Chromium total		< 0.20 < 0.00050	0.20	mg/L								
Chromium, total Cobalt, total		< 0.00050	0.00030									
Copper, total		< 0.00040	0.00040									
Iron, total		< 0.010		mg/L								
Lead, total		< 0.00020	0.00020									
Lithium, total		< 0.00010	0.00010	mg/L								
Magnesium, total		< 0.010		mg/L								
Manganese, total		< 0.00020	0.00020									
Molybdenum, total		< 0.00010	0.00010 0.00040									
Nickel, total Phosphorus, total		< 0.00040 < 0.050		mg/L								
Potassium, total		< 0.10		mg/L								
Selenium, total		< 0.00050	0.00050									
Silicon, total		< 1.0		mg/L								
Silver, total		< 0.000050	0.000050	mg/L								
Sodium, total		< 0.10		mg/L								
Strontium, total		< 0.0010	0.0010									
Sulfur, total Tellurium, total		< 3.0	0.00050	mg/L								
Thallium, total		< 0.00030	0.00030									
Thorium, total		< 0.00010	0.00010									
Tin, total		< 0.00020	0.00020									
Titanium, total		< 0.0050	0.0050									
Tungsten, total		< 0.0010	0.0010	mg/L								
Uranium, total		< 0.000020	0.000020									
Vanadium, total		< 0.0010	0.0010									
Zinc, total		< 0.0040	0.0040									
Zirconium, total LCS (B1J1202-BS1)	< 0.00010	0.00010	mg/L	Prepared	l: 2021-10-1	l2. Analvze	d: 2021-1	0-14			
Aluminum, total	•	0.0239	0.0050	ma/L	0.0200		120	80-120				
Antimony, total		0.0219	0.00020		0.0200		110	80-120				
Arsenic, total		0.0217	0.00050		0.0200		108	80-120				
Barium, total		0.0204	0.0050		0.0200		102	80-120				
Beryllium, total		0.0215	0.00010		0.0200		108	80-120				
Bismuth, total		0.0225	0.00010		0.0200		112	80-120				
Boron, total		< 0.0500	0.0500	mg/L	0.0200		116	80-120		Pa	ge 23 of 27	

REPORTED TO	Elk River Alliance	WORK ORDER	21J0990
PROJECT	ERA-CBWM	REPORTED	2021-10-14 16:07

Analyte	Result	RL Units	Spike Level	Source % Result	REC	REC Limit	% RPD	RPD Limit	Qualifier
Total Metals, Batch B1J1202, Continued									
LCS (B1J1202-BS1), Continued			Prepared	: 2021-10-12, A	nalyze	d: 2021-1	10-14		
Cadmium, total	0.0208	0.000010 mg/L	0.0200		104	80-120			
Calcium, total	2.11	0.20 mg/L	2.00		105	80-120			
Chromium, total	0.0223	0.00050 mg/L	0.0200		112	80-120			
Cobalt, total	0.0223	0.00010 mg/L	0.0200		112	80-120			
Copper, total	0.0228	0.00040 mg/L	0.0200		114	80-120			
Iron, total	2.18	0.010 mg/L	2.00		109	80-120			
Lead, total	0.0228	0.00020 mg/L	0.0200		114	80-120			
Lithium, total	0.0211	0.00010 mg/L	0.0200		106	80-120			
Magnesium, total	2.30	0.010 mg/L	2.00		115	80-120			
Manganese, total	0.0217	0.00020 mg/L	0.0200		108	80-120			
Molybdenum, total	0.0208	0.00010 mg/L	0.0200		104	80-120			
Nickel, total Phosphorus, total	0.0227	0.00040 mg/L	0.0200		113	80-120			
	2.32	0.050 mg/L 0.10 mg/L	2.00		116 108	80-120 80-120			
Potassium, total Selenium, total	0.0222	0.00050 mg/L	0.0200		111	80-120			
Silicon, total	2.4	1.0 mg/L	2.00		118	80-120			
Silver, total	0.0214	0.000050 mg/L	0.0200		107	80-120			
Sodium, total	2.23	0.10 mg/L	2.00		112	80-120			
Strontium, total	0.0199	0.0010 mg/L	0.0200		99	80-120			
Sulfur, total	5.8	3.0 mg/L	5.00		115	80-120			
Tellurium, total	0.0209	0.00050 mg/L	0.0200		104	80-120			
Thallium, total	0.0220	0.000020 mg/L	0.0200		110	80-120			
Thorium, total	0.0210	0.00010 mg/L	0.0200		105	80-120			
Tin, total	0.0226	0.00020 mg/L	0.0200		113	80-120			
Titanium, total	0.0226	0.0050 mg/L	0.0200		113	80-120			
Tungsten, total	0.0216	0.0010 mg/L	0.0200		108	80-120			
Uranium, total	0.0213	0.000020 mg/L	0.0200		107	80-120			
Vanadium, total	0.0220	0.0010 mg/L	0.0200		110	80-120			
Zinc, total	0.0239	0.0040 mg/L	0.0200		120	80-120			
Zirconium, total	0.0220	0.00010 mg/L	0.0200		110	80-120			
LCS (B1J1202-BS2)			Prepared	: 2021-10-12, A	nalyze	d: 2021-1	10-14		
Aluminum, total	0.0237	0.0050 mg/L	0.0200		119	80-120			
Antimony, total	0.0206	0.00020 mg/L	0.0200		103	80-120			
Arsenic, total	0.0200	0.00050 mg/L	0.0200		100	80-120			
Barium, total	0.0194	0.0050 mg/L	0.0200		97	80-120			
Beryllium, total	0.0199	0.00010 mg/L	0.0200		99	80-120			
Bismuth, total	0.0205 < 0.0500	0.00010 mg/L 0.0500 mg/L	0.0200		103	80-120 80-120			
Boron, total Cadmium, total	0.0196	0.000010 mg/L	0.0200		98	80-120			
Calcium, total	1.96	0.20 mg/L	2.00		98	80-120			
Chromium, total	0.0207	0.00050 mg/L	0.0200		104	80-120			
Cobalt, total	0.0210	0.00000 mg/L	0.0200		105	80-120			
Copper, total	0.0208	0.00040 mg/L	0.0200		104	80-120			
Iron, total	2.05	0.010 mg/L	2.00		102	80-120			
Lead, total	0.0209	0.00020 mg/L	0.0200		104	80-120			
Lithium, total	0.0194	0.00010 mg/L	0.0200		97	80-120			
Magnesium, total	2.16	0.010 mg/L	2.00		108	80-120			
Manganese, total	0.0213	0.00020 mg/L	0.0200		107	80-120			
Molybdenum, total	0.0198	0.00010 mg/L	0.0200		99	80-120			
Nickel, total	0.0211	0.00040 mg/L	0.0200		106	80-120	-		
Phosphorus, total	2.26	0.050 mg/L	2.00		113	80-120			
Potassium, total	2.06	0.10 mg/L	2.00		103	80-120			
Selenium, total	0.0213	0.00050 mg/L	0.0200		107	80-120			
Silicon, total	2.2	1.0 mg/L	2.00		111	80-120			
Silver, total	0.0198	0.000050 mg/L	0.0200		99	80-120			

Total Metals, Batch B1/1202, Continued Prepared: 2021-10-12, Analyzed: 2021-10-14 Prepared: 2	REPORTED TO PROJECT	Elk River Alliance ERA-CBWM									J0990 21-10-14 16:07	
Prepared: 2021-10-12, Analyzed: 2021-10-14	Analyte		Result	RL Units	•		% REC		% RPD		Qualifier	
Section 1014 0.010 mgt 0.0200 97 80-120	Total Metals, Batch	h B1J1202, Continued										
Streetman, total 0.0194 0.0910 mg/L 0.0200 97 80-120 Stuffer, total 5.6 3.0 mg/L 5.00 mg/L 111 80-120 Tellurum, total 0.0192 0.00000 mg/L 0.0200 96 80-120 Thortum, total 0.0202 0.00000 mg/L 0.0200 95 80-120 Thortum, total 0.0205 0.00000 mg/L 0.0200 95 80-120 Thortum, total 0.0205 0.00000 mg/L 0.0200 95 80-120 Thortum, total 0.0197 0.00000 mg/L 0.0200 99 80-120 Thortum, total 0.0197 0.00000 mg/L 0.0200 99 80-120 Thortum, total 0.0197 0.00000 mg/L 0.0200 99 80-120 Thortum, total 0.0197 0.00000 mg/L 0.0200 98 80-120 Thortum, total 0.0197 0.00000 mg/L 0.0200 98 80-120 Thortum, total 0.00000 0.0000 mg/L 0.0200 98 80-120 Thortum, total 0.00000 0.0000 mg/L 0.0200 10.04 80-120 Thortum, total 0.00000 0.00000 mg/L 0.00000 0.00000 0.0000 mg/L 0.00000 0.00000 0.00000 mg/L 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000	LCS (B1J1202-BS2	2), Continued			Prepared	: 2021-10-1	2, Analyze	d: 2021-1	0-14			
Sulfur, total	Sodium, total		2.10	0.10 mg/L	2.00		105	80-120				
Tellum, total	Strontium, total		0.0194	0.0010 mg/L	0.0200		97	80-120				
Thallum, total	Sulfur, total			3.0 mg/L	5.00		111	80-120				
Thorium, total												
Tits Colar 0.0200 0.0020 mg/L 0.0200 102 80-120 Tits Tits 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.000000 1.0000000 1.0000000000												
Titanium, Indial												
Tungsten, total												
Uranium, total												
Variation 0.0244 0.0010 mg/L 0.0200 102 80-120												
Discription												
Duplicate (B11/1202-DUP2)												
Duplicate (B1J1202-DUP2) Source: 21J0990-05 Prepared: 2021-10-12, Analyzed: 2021-10-14												
Abminum, total		2 DUD2)				. 2021-10-1			0-14			
Antimony, total		2-00P2)			Fiepaieu		z, Allalyze	u. 2021-1				
Arsenic, total									4			
Barrium, total												
Beryllium, total									2			
Bismuth, total									<u> </u>			
Boron, total												
Caderium, total												
Calcium, total												
Chromium, total									2			
Copper, total 0.00061 0.00040 mg/L 0.00087 20 Iron, total 0.050 0.010 mg/L 0.051 1 20 Lead, total 0.00022 0.00020 mg/L 0.00003 20 Lithium, total 0.00072 0.00010 mg/L 0.00069 5 20 Magnaese, total 0.00163 0.00020 mg/L 0.00162 < 1	Chromium, total		< 0.00050			< 0.00050				20		
Iron, total	Cobalt, total		< 0.00010	0.00010 mg/L		< 0.00010				20		
Lead, total	Copper, total		0.00061	0.00040 mg/L		0.00087				20		
Lithium, total 0.00072 0.00010 mg/L 0.00069 5 20 Magnesium, total 2.35 0.010 mg/L 2.39 2 20 Manganese, total 0.00163 0.00020 mg/L 0.00162 < 1									1			
Magnesium, total 2.35 0.010 mg/L 2.39 2 20 Manganese, total 0.00163 0.00020 mg/L 0.00162 <1												
Manganese, total 0.00163 0.00020 mg/L 0.00162 < 1 20 Molybdenum, total 0.00029 0.00010 mg/L 0.00035 20 Nickel, total 0.00050 0.00040 mg/L 0.00043 20 Phosphorus, total < 0.050												
Molybdenum, total 0.00029 0.00010 mg/L 0.00035 20 Nickel, total 0.00050 0.00040 mg/L 0.00043 20 Phosphorus, total < 0.050												
Nickel, total 0.00050 0.00040 mg/L 0.00043 20 Phosphorus, total < 0.050									< 1			
Phosphorus, total < 0.050 0.050 mg/L < 0.050 20 Potassium, total 0.33 0.10 mg/L 0.34 20 Selenium, total < 0.00050												
Potassium, total												
Selenium, total \$ < 0.00050 \$ 0.00050 mg/L \$ < 0.00050 \$ 20												
Silicon, total 1.7 1.0 mg/L 1.8 20 Silver, total < 0.000050												
Silver, total < 0.000050 0.000050 mg/L < 0.000050 20 Sodium, total 0.84 0.10 mg/L 0.85 2 20 Strontium, total 0.0507 0.0010 mg/L 0.0491 3 20 Sulfur, total < 3.0												
Sodium, total 0.84 0.10 mg/L 0.85 2 20 Strontium, total 0.0507 0.0010 mg/L 0.0491 3 20 Sulfur, total < 3.0			< 0.000050									
Sulfur, total < 3.0 3.0 mg/L 3.8 20 Tellurium, total < 0.00050	Sodium, total		0.84			0.85			2	20		
Tellurium, total < 0.00050 0.00050 mg/L < 0.00050 20 Thallium, total < 0.000020	Strontium, total		0.0507	0.0010 mg/L		0.0491			3	20		
Thallium, total < 0.000020 0.000020 mg/L < 0.000020 20 Thorium, total < 0.00010	Sulfur, total		< 3.0	3.0 mg/L		3.8				20		
Thorium, total < 0.00010 0.00010 mg/L < 0.00010 20 Tin, total < 0.00020	Tellurium, total											
Tin, total < 0.00020 0.00020 mg/L < 0.00020 20 Titanium, total < 0.0050												
Titanium, total < 0.0050 0.0050 mg/L < 0.0050 20 Tungsten, total < 0.0010												
Tungsten, total < 0.0010 0.0010 mg/L < 0.0010 20 Uranium, total 0.000050 0.000020 mg/L 0.000046 20 Vanadium, total < 0.0010												
Uranium, total 0.000050 0.000020 mg/L 0.000046 20 Vanadium, total < 0.0010												
Vanadium, total < 0.0010												
Zinc, total < 0.0040 0.0040 mg/L < 0.0040 20 Zirconium, total 0.00017 0.00010 mg/L 0.00018 20 Reference (B1J1202-SRM1) Prepared: 2021-10-12, Analyzed: 2021-10-14 Aluminum, total 0.301 0.0050 mg/L 0.299 101 70-130 Antimony, total 0.0521 0.00020 mg/L 0.0517 101 70-130 Arsenic, total 0.125 0.00050 mg/L 0.119 105 70-130												
Zirconium, total 0.00017 0.00010 mg/L 0.00018 20 Reference (B1J1202-SRM1) Prepared: 2021-10-12, Analyzed: 2021-10-14 Aluminum, total 0.301 0.0050 mg/L 0.299 101 70-130 Antimony, total 0.0521 0.00020 mg/L 0.0517 101 70-130 Arsenic, total 0.125 0.00050 mg/L 0.119 105 70-130												
Aluminum, total 0.301 0.0050 mg/L 0.299 101 70-130 Antimony, total 0.0521 0.00020 mg/L 0.0517 101 70-130 Arsenic total 0.125 0.00050 mg/l 0.119 105 70-130												
Aluminum, total 0.301 0.0050 mg/L 0.299 101 70-130 Antimony, total 0.0521 0.00020 mg/L 0.0517 101 70-130 Arsenic total 0.125 0.00050 mg/l 0.119 105 70-130		02-SRM1)			Prepared		2, Analvze	d: 2021-1	0-14			
Antimony, total 0.0521 0.00020 mg/L 0.0517 101 70-130 Arsenic total 0.125 0.00050 mg/l 0.119 105 70-130			N 3N1	0.0050 mg/l		0 10 1/	•					
Arsenic total 0.125 0.00050 mg/l 0.119 105 70-130												

REPORTED TO	Elk River Alliance	WORK ORDER	21J0990 \
PROJECT	ERA-CBWM	REPORTED	2021-10-14 16:07

									<u> </u>
Analyte	Result	RL Units	Spike		REC	REC	% RPD	RPD	Qualifier
			Level	Result		Limit		Limit	
Total Metals, Batch B1J1202, Continued									
Reference (B1J1202-SRM1), Continued			Prepared	: 2021-10-12, <i>A</i>	nalyze	d· 2021-	10-14		
·	0.689	0.0050 mg/L		. 2021 10 12,7	86	70-130			
Barium, total Beryllium, total	0.0501	0.0000 mg/L	0.801		100	70-130			
Boron, total	4.09	0.0500 mg/L	4.11		100	70-130			
Cadmium, total	0.0506	0.000010 mg/L	0.0503		101	70-130			
Calcium, total	10.5	0.20 mg/L	10.7		98	70-130			
Chromium, total	0.261	0.00050 mg/L	0.250		104	70-130			
Cobalt, total	0.0408	0.00010 mg/L	0.0384		106	70-130			
Copper, total	0.514	0.00040 mg/L	0.487		106	70-130			
Iron, total	0.518	0.010 mg/L	0.504		103	70-130			
Lead, total	0.299	0.00020 mg/L	0.278		107	70-130			
Lithium, total	0.400	0.00010 mg/L	0.398		100	70-130			
Magnesium, total	3.97	0.010 mg/L	3.59		111	70-130			
Manganese, total	0.112	0.00020 mg/L	0.111		101	70-130			
Molybdenum, total	0.204	0.00010 mg/L	0.196		104	70-130			
Nickel, total	0.265	0.00040 mg/L	0.248		107	70-130			
Phosphorus, total	0.208	0.050 mg/L	0.213		98	70-130			
Potassium, total	6.16	0.10 mg/L	5.89		105	70-130			
Selenium, total	0.128	0.00050 mg/L	0.120		107	70-130			
Sodium, total	9.45	0.10 mg/L	8.71		109	70-130			
Strontium, total	0.381	0.0010 mg/L	0.393		97	70-130			
Thallium, total	0.0836	0.000020 mg/L	0.0787		106	70-130			
Uranium, total	0.0346	0.000020 mg/L	0.0344		101	70-130			
Vanadium, total	0.396	0.0010 mg/L	0.391		101	70-130			
Zinc, total	2.81	0.0040 mg/L	2.50		112	70-130			
Reference (B1J1202-SRM2)			Prepared	: 2021-10-12, A	nalyze	d: 2021-	10-14		
Aluminum, total	0.274	0.0050 mg/L	0.299		92	70-130			
Antimony, total	0.0484	0.00020 mg/L	0.0517		94	70-130			
Arsenic, total	0.114	0.00050 mg/L	0.119		96	70-130			
Barium, total	0.643	0.0050 mg/L	0.801		80	70-130			
Beryllium, total	0.0460	0.00010 mg/L	0.0501		92	70-130			
Boron, total	3.76	0.0500 mg/L	4.11		92	70-130			
Cadmium, total	0.0469	0.000010 mg/L	0.0503		93	70-130			
Calcium, total	9.52	0.20 mg/L	10.7		89	70-130			
Chromium, total	0.239	0.00050 mg/L	0.250		95	70-130			
Cobalt, total	0.0379	0.00010 mg/L	0.0384		99	70-130			
Copper, total	0.467	0.00040 mg/L	0.487		96	70-130			
Iron, total	0.482	0.010 mg/L	0.504		96	70-130			
Lead, total	0.279	0.00020 mg/L	0.278		100	70-130			
Lithium, total	0.367	0.00010 mg/L	0.398		92	70-130			
Magnesium, total	3.55	0.010 mg/L	3.59		99	70-130			
Manganese, total	0.104	0.00020 mg/L	0.111		94	70-130			
Molybdenum, total	0.189	0.00010 mg/L	0.196		96	70-130			
Nickel, total	0.239	0.00040 mg/L	0.248		96	70-130			
Phosphorus, total	0.191	0.050 mg/L	0.213		90	70-130			
Potassium, total	5.49	0.10 mg/L	5.89		93	70-130			
Selenium, total	0.118	0.00050 mg/L	0.120		99	70-130			
Sodium, total	8.30	0.10 mg/L	8.71		95	70-130			
Strontium, total	0.352	0.0010 mg/L	0.393		90	70-130			
Thallium, total	0.0775	0.000020 mg/L	0.0787		99	70-130			
Uranium, total	0.0320	0.000020 mg/L	0.0344		93	70-130			
Vanadium, total Zinc, total	0.358 2.54	0.0010 mg/L 0.0040 mg/L	0.391 2.50		92 102	70-130 70-130			
ZIIIO, IUIAI	2.54	0.0040 Hig/L	2.50		102	10-130			

Total Metals, Batch B1J1319

REPORTED TOElk River AllianceWORK ORDER21J0990PROJECTERA-CBWMREPORTED2021-10-14 16:07

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Total Metals, Batch B1J1319, Continu	ed								
Blank (B1J1319-BLK1)			Prepared	l: 2021-10-1	I3, Analyze	d: 2021-	10-13		
Mercury, total	< 0.000010	0.000010 mg/L							
Blank (B1J1319-BLK2)			Prepared	l: 2021-10- 1	I3, Analyze	d: 2021-	10-13		
Mercury, total	< 0.000010	0.000010 mg/L							
Blank (B1J1319-BLK3)			Prepared	l: 2021-10- 1	I3, Analyze	d: 2021-	10-13		
Mercury, total	< 0.000010	0.000010 mg/L							
Reference (B1J1319-SRM1)			Prepared	l: 2021-10- 1	I3, Analyze	d: 2021-	10-13		
Mercury, total	0.00511	0.000010 mg/L	0.00581		88	70-130			
Reference (B1J1319-SRM2)			Prepared	l: 2021-10- 1	13, Analyze	d: 2021-	10-13		
Mercury, total	0.00581	0.000010 mg/L	0.00581		100	70-130			
Reference (B1J1319-SRM3)			Prepared	l: 2021-10- 1	I3, Analyze	d: 2021-	10-13		
Mercury, total	0.00590	0.000010 mg/L	0.00581		102	70-130			

CERTIFICATE OF ANALYSIS

REPORTED TO Elk River Alliance

PO Box 2095, 1111 2nd Ave

Fernie, BC V0B1M0

ATTENTION Kaileigh McCallum

PO NUMBER

PROJECT ERA-CBWM

PROJECT INFO [info]

WORK ORDER 21J1168

RECEIVED / TEMP REPORTED

COC NUMBER

2021-10-08 09:40 / 4.7°C

2021-11-05 16:36

No Number

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

We've Got Chemistry

Ahead of the Curve

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too.

It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at teamcaro@caro.ca

Authorized By:

Team CARO
Client Service Representative

1-888-311-8846 | www.caro.ca

REPORTED TO Elk River Alliance PROJECT ERA-CBWM

WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
B01001_20211005_1030 (21J1168-01) N	latrix: Water Sam	pled: 2021-10-05 1	0:30			
Anions						
Chloride	< 0.10	AO ≤ 250	0.10	mg/L	2021-10-14	
Nitrate (as N)	0.046	MAC = 10	0.010		2021-10-14	HT1
Nitrite (as N)	< 0.010	MAC = 1	0.010		2021-10-14	HT1
Phosphate (as P)	< 0.0050	N/A	0.0050		2021-10-14	HT1
Sulfate	58.3	AO ≤ 500		mg/L	2021-10-14	
BCMOE Aggregate Hydrocarbons						
EPHw10-19	< 250	N/A	250	μg/L	2021-10-17	
EPHw19-32	< 250	N/A	250		2021-10-17	
Surrogate: 2-Methylnonane (EPH/F2-4)	87		60-140	%	2021-10-17	
Calculated Parameters						
Hardness, Total (as CaCO3)	185	None Required	0.500	ma/L	N/A	
Nitrate+Nitrite (as N)	0.0459	N/A	0.0100		N/A	
Nitrogen, Total	0.168	N/A	0.0500		N/A	
Dissolved Metals						
Aluminum, dissolved	< 0.0050	N/A	0.0050	mg/L	2021-10-16	
Antimony, dissolved	< 0.00020	N/A	0.00020		2021-10-16	
Arsenic, dissolved	< 0.00050	N/A	0.00050		2021-10-16	
Barium, dissolved	0.0263	N/A	0.0050	mg/L	2021-10-16	
Beryllium, dissolved	< 0.00010	N/A	0.00010		2021-10-16	
Bismuth, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
Boron, dissolved	< 0.0500	N/A	0.0500	mg/L	2021-10-16	
Cadmium, dissolved	0.000030	N/A	0.000010	mg/L	2021-10-16	
Calcium, dissolved	50.6	N/A		mg/L	2021-10-16	
Chromium, dissolved	< 0.00050	N/A	0.00050		2021-10-16	
Cobalt, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
Copper, dissolved	< 0.00040	N/A	0.00040	mg/L	2021-10-16	
Iron, dissolved	< 0.010	N/A	0.010	mg/L	2021-10-16	
Lead, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-16	
Lithium, dissolved	0.00142	N/A	0.00010	mg/L	2021-10-16	
Magnesium, dissolved	14.2	N/A	0.010	mg/L	2021-10-16	
Manganese, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-16	
Mercury, dissolved	< 0.000010	N/A	0.000010	mg/L	2021-10-15	
Molybdenum, dissolved	0.00138	N/A	0.00010	mg/L	2021-10-16	
Nickel, dissolved	< 0.00040	N/A	0.00040	mg/L	2021-10-16	
Phosphorus, dissolved	< 0.050	N/A	0.050	mg/L	2021-10-16	
Potassium, dissolved	0.29	N/A	0.10	mg/L	2021-10-16	
Selenium, dissolved	0.00097	N/A	0.00050	mg/L	2021-10-16	
Silicon, dissolved	2.1	N/A	1.0	mg/L	2021-10-16	
Silver, dissolved	< 0.000050	N/A	0.000050	mg/L	2021-10-16	
Sodium, dissolved	0.68	N/A	0.10	mg/L	2021-10-16	
Strontium, dissolved	0.561	N/A	0.0010	mg/L	2021-10-16	
						Page 2 of 34

Elk River Alliance REPORTED TO ERA-CBWM PROJECT

WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
B01001_20211005_1030 (21J1168-01) Matrix: Water Sa	mpled: 2021-10-05	10:30, Contin	ued		
Dissolved Metals, Continued						_
Sulfur, dissolved	16.9	N/A	3.0	mg/L	2021-10-16	
Tellurium, dissolved	< 0.00050	N/A	0.00050		2021-10-16	
Thallium, dissolved	< 0.000020	N/A	0.000020		2021-10-16	
Thorium, dissolved	< 0.00010	N/A	0.00010		2021-10-16	
Tin, dissolved	< 0.00020	N/A	0.00020		2021-10-16	
Titanium, dissolved	< 0.0050	N/A	0.0050		2021-10-16	
Tungsten, dissolved	< 0.0010	N/A	0.0010		2021-10-16	
Uranium, dissolved	0.000948	N/A	0.000020		2021-10-16	
Vanadium, dissolved	< 0.0010	N/A	0.0010		2021-10-16	
Zinc, dissolved	< 0.0040	N/A	0.0040		2021-10-16	
Zirconium, dissolved	< 0.00010	N/A	0.00010		2021-10-16	
·	0.000.0		0.000.0	9/ =		
General Parameters						
Alkalinity, Total (as CaCO3)	133	N/A		mg/L	2021-10-12	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Bicarbonate (as CaCO3)	133	N/A	1.0		2021-10-12	
Alkalinity, Carbonate (as CaCO3)	< 1.0	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	N/A		mg/L	2021-10-12	
Carbon, Total Organic	0.93	N/A		mg/L	2021-10-12	
Carbon, Dissolved Organic	0.64	N/A		mg/L	2021-10-12	
Nitrogen, Total Kjeldahl	0.122	N/A	0.050		2021-10-15	
Phosphorus, Total (as P)	0.0059	N/A	0.0050	mg/L	2021-10-18	
Solids, Total Suspended	< 2.0	N/A	2.0	mg/L	2021-10-13	HT1
Total Metals						
Aluminum, total	< 0.0050	OG < 0.1	0.0050	mg/L	2021-10-17	
Antimony, total	< 0.00020	MAC = 0.006	0.00020	mg/L	2021-10-17	
Arsenic, total	< 0.00050	MAC = 0.01	0.00050	mg/L	2021-10-17	
Barium, total	0.0260	MAC = 2	0.0050	mg/L	2021-10-17	
Beryllium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Bismuth, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Boron, total	< 0.0500	MAC = 5	0.0500	mg/L	2021-10-17	
Cadmium, total	0.000026	MAC = 0.005	0.000010	mg/L	2021-10-17	
Calcium, total	49.4	None Required	0.20	mg/L	2021-10-17	
Chromium, total	0.00057	MAC = 0.05	0.00050	mg/L	2021-10-17	
Cobalt, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Copper, total	0.00335	MAC = 2	0.00040	mg/L	2021-10-17	
Iron, total	0.032	AO ≤ 0.3	0.010	mg/L	2021-10-17	
Lead, total	< 0.00020	MAC = 0.005	0.00020	mg/L	2021-10-17	
Lithium, total	0.00151	N/A	0.00010	mg/L	2021-10-17	
Magnesium, total	14.5	None Required	0.010	mg/L	2021-10-17	
Manganese, total	0.00020	MAC = 0.12	0.00020	mg/L	2021-10-17	
Mercury, total	< 0.000010	MAC = 0.001	0.000010		2021-10-15	
Molybdenum, total	0.00145	N/A	0.00010	mg/L	2021-10-17	
	Caring	About Results, Obv	iously.			Page 3 of 34

REPORTED TO Elk River Alliance PROJECT ERA-CBWM

WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
B01001_20211005_1030 (21J1168-0	1) Matrix: Water Sam	npled: 2021-10-05 1	0:30, Continu	ued		
Total Metals, Continued						
Nickel, total	0.0112	N/A	0.00040	mg/L	2021-10-17	
Phosphorus, total	< 0.050	N/A	0.050	mg/L	2021-10-17	
Potassium, total	0.34	N/A	0.10	mg/L	2021-10-17	
Selenium, total	0.00104	MAC = 0.05	0.00050	mg/L	2021-10-17	
Silicon, total	2.0	N/A	1.0	mg/L	2021-10-17	
Silver, total	< 0.000050	None Required	0.000050	mg/L	2021-10-17	
Sodium, total	0.62	AO ≤ 200	0.10	mg/L	2021-10-17	
Strontium, total	0.552	7	0.0010	mg/L	2021-10-17	
Sulfur, total	21.4	N/A	3.0	mg/L	2021-10-17	
Tellurium, total	< 0.00050	N/A	0.00050	mg/L	2021-10-17	
Thallium, total	< 0.000020	N/A	0.000020	mg/L	2021-10-17	
Thorium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Tin, total	< 0.00020	N/A	0.00020	mg/L	2021-10-17	
Titanium, total	< 0.0050	N/A	0.0050	mg/L	2021-10-17	
Tungsten, total	< 0.0010	N/A	0.0010	mg/L	2021-10-17	
Uranium, total	0.000919	MAC = 0.02	0.000020	mg/L	2021-10-17	
37 P 7 1 1	< 0.0010	N/A	0.0010	mg/L	2021-10-17	
Vanadium, total	0.0010					
Vanadium, total Zinc, total	0.0044	AO ≤ 5	0.0040	mg/L	2021-10-17	
·		•	0.0040 0.00010		2021-10-17 2021-10-17	
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions	0.0044 < 0.00010 2) Matrix: Water Sam	AO ≤ 5 N/A npled: 2021-10-05 1	0.00010 4:50	mg/L	2021-10-17	
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10	AO ≤ 5 N/A npled: 2021-10-05 1 AO ≤ 250	0.00010 4:50 0.10	mg/L	2021-10-17	
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N)	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10 0.040	AO ≤ 5 N/A npled: 2021-10-05 1 AO ≤ 250 MAC = 10	0.00010 4:50 0.10 0.010	mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14	HT1
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N) Nitrite (as N)	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10 0.040 < 0.010	AO ≤ 5 N/A npled: 2021-10-05 1 AO ≤ 250 MAC = 10 MAC = 1	0.00010 4:50 0.10 0.010 0.010	mg/L mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14 2021-10-14	HT1
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P)	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10 0.040 < 0.010 < 0.0050	AO ≤ 5 N/A npled: 2021-10-05 1 AO ≤ 250 MAC = 10 MAC = 1 N/A	0.00010 4:50 0.10 0.010 0.010 0.0050	mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14	
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N) Nitrite (as N)	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10 0.040 < 0.010	AO ≤ 5 N/A npled: 2021-10-05 1 AO ≤ 250 MAC = 10 MAC = 1	0.00010 4:50 0.10 0.010 0.010 0.0050	mg/L mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14 2021-10-14	HT1
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P)	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10 0.040 < 0.010 < 0.0050	AO ≤ 5 N/A npled: 2021-10-05 1 AO ≤ 250 MAC = 10 MAC = 1 N/A	0.00010 4:50 0.10 0.010 0.010 0.0050	mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14	HT1
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10 0.040 < 0.010 < 0.0050	AO ≤ 5 N/A npled: 2021-10-05 1 AO ≤ 250 MAC = 10 MAC = 1 N/A	0.00010 4:50 0.10 0.010 0.010 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14	HT1
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate Calculated Parameters	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10 0.040 < 0.010 < 0.0050 58.1	AO ≤ 5 N/A npled: 2021-10-05 1 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	0.00010 4:50 0.10 0.010 0.010 0.0050 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14	HT1
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate Calculated Parameters Hardness, Total (as CaCO3)	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10 0.040 < 0.010 < 0.0050 58.1	AO ≤ 5 N/A AD ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 None Required	0.00010 4:50 0.10 0.010 0.010 0.0050 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 N/A	HT1
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N)	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10 0.040 < 0.010 < 0.0050 58.1 193 0.0399	AO ≤ 5 N/A Appled: 2021-10-05 1 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 None Required N/A	0.00010 4:50 0.10 0.010 0.010 0.0050 1.0 0.500 0.0100	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 N/A N/A	HT1
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10 0.040 < 0.010 < 0.0050 58.1 193 0.0399	AO ≤ 5 N/A Appled: 2021-10-05 1 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 None Required N/A	0.00010 4:50 0.10 0.010 0.010 0.0050 1.0 0.500 0.0100	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 N/A N/A	HT1
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total Dissolved Metals	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10 0.040 < 0.010 < 0.0050 58.1 193 0.0399 < 0.0500	AO ≤ 5 N/A AD ≤ 250 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 None Required N/A N/A	0.00010 4:50 0.10 0.010 0.0050 1.0 0.500 0.0100 0.0500	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 N/A N/A N/A	HT1
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total Dissolved Metals Aluminum, dissolved	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10 0.040 < 0.010 < 0.0050 58.1 193 0.0399 < 0.0500 < 0.0050	AO ≤ 5 N/A Appled: 2021-10-05 1 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 None Required N/A N/A N/A	0.00010 4:50 0.10 0.010 0.0050 1.0 0.500 0.0100 0.0500	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 N/A N/A N/A N/A 2021-10-16	HT1
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total Dissolved Metals Aluminum, dissolved Antimony, dissolved	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10	AO ≤ 5 N/A AD ≤ 250 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 None Required N/A N/A N/A N/A	0.00010 4:50 0.10 0.010 0.0050 1.0 0.500 0.0100 0.0500 0.0050 0.0050 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 N/A N/A N/A N/A 2021-10-16 2021-10-16	HT1
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10 0.040 < 0.010 < 0.0050 58.1 193 0.0399 < 0.0500 < 0.0050 < 0.00020 0.00051	AO ≤ 5 N/A Appled: 2021-10-05 1: AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 None Required N/A N/A N/A N/A N/A	0.00010 4:50 0.10 0.010 0.010 0.0050 1.0 0.500 0.0100 0.0500 0.0050 0.00050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 N/A N/A N/A N/A 2021-10-16 2021-10-16	HT1
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total Dissolved Metals Aluminum, dissolved Antimony, dissolved Barium, dissolved Barium, dissolved	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10 0.040 < 0.010 < 0.0050 58.1 193 0.0399 < 0.0500 < 0.0050 < 0.00051 0.0079	AO ≤ 5 N/A AD ≤ 250 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 None Required N/A N/A N/A N/A N/A N/A N/A	0.00010 4:50 0.10 0.010 0.010 0.0050 1.0 0.500 0.0100 0.0500 0.0050 0.00050 0.00050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 N/A N/A N/A N/A 2021-10-16 2021-10-16 2021-10-16 2021-10-16	HT1
Zinc, total Zirconium, total B01002_20211005_1450 (21J1168-02 Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total Dissolved Metals Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Beryllium, dissolved	0.0044 < 0.00010 2) Matrix: Water Sam < 0.10 0.040 < 0.010 < 0.0050 58.1 193 0.0399 < 0.0500 < 0.0050 < 0.00050 < 0.00020 0.00051 0.0279 < 0.00010	AO ≤ 5 N/A AD ≤ 250 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 None Required N/A	0.00010 4:50 0.10 0.010 0.010 0.0050 1.0 0.500 0.0100 0.0500 0.0050 0.00050 0.00050 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-16 2021-10-16 2021-10-16 2021-10-16 2021-10-16	HT1

REPORTED TO Elk R **PROJECT** ERA-

Elk River Alliance ERA-CBWM WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
B01002_20211005_1450 (21J1168-02)	Matrix: Water Sam	oled: 2021-10-05	14:50, Continu	neq		
Dissolved Metals, Continued						
Calcium, dissolved	52.4	N/A	0.20	mg/L	2021-10-16	
Chromium, dissolved	0.00054	N/A	0.00050	mg/L	2021-10-16	
Cobalt, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
Copper, dissolved	< 0.00040	N/A	0.00040	mg/L	2021-10-16	
Iron, dissolved	< 0.010	N/A	0.010	mg/L	2021-10-16	
Lead, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-16	
Lithium, dissolved	0.00148	N/A	0.00010	mg/L	2021-10-16	
Magnesium, dissolved	14.9	N/A	0.010	mg/L	2021-10-16	
Manganese, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-16	
Mercury, dissolved	< 0.000010	N/A	0.000010	mg/L	2021-10-15	
Molybdenum, dissolved	0.00161	N/A	0.00010	mg/L	2021-10-16	
Nickel, dissolved	< 0.00040	N/A	0.00040	mg/L	2021-10-16	
Phosphorus, dissolved	< 0.050	N/A	0.050	mg/L	2021-10-16	
Potassium, dissolved	0.32	N/A	0.10	mg/L	2021-10-16	
Selenium, dissolved	0.00104	N/A	0.00050	mg/L	2021-10-16	
Silicon, dissolved	2.1	N/A	1.0	mg/L	2021-10-16	
Silver, dissolved	< 0.000050	N/A	0.000050	mg/L	2021-10-16	
Sodium, dissolved	0.68	N/A	0.10	mg/L	2021-10-16	
Strontium, dissolved	0.591	N/A	0.0010	mg/L	2021-10-16	
Sulfur, dissolved	19.7	N/A	3.0	mg/L	2021-10-16	
Tellurium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-16	
Thallium, dissolved	< 0.000020	N/A	0.000020	mg/L	2021-10-16	
Thorium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
Tin, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-16	
Titanium, dissolved	< 0.0050	N/A	0.0050	mg/L	2021-10-16	
Tungsten, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-16	
Uranium, dissolved	0.000979	N/A	0.000020	mg/L	2021-10-16	
Vanadium, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-16	
Zinc, dissolved	0.0054	N/A	0.0040	mg/L	2021-10-16	
Zirconium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
General Parameters						
Alkalinity, Total (as CaCO3)	132	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	N/A		mg/L	2021-10-12	
Alkalinity, Bicarbonate (as CaCO3)	132	N/A		mg/L	2021-10-12	
Alkalinity, Carbonate (as CaCO3)	< 1.0	N/A		mg/L	2021-10-12	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	N/A		mg/L	2021-10-12	
Carbon, Total Organic	0.76	N/A		mg/L	2021-10-12	
Carbon, Dissolved Organic	0.52	N/A		mg/L	2021-10-12	
Nitrogen, Total Kjeldahl	< 0.050	N/A	0.050		2021-10-15	
Phosphorus, Total (as P)	0.0050	N/A	0.0050		2021-10-18	
Solids, Total Suspended	< 2.0	N/A		mg/L	2021-10-14	HT1
, , , , , , , , , , , , , , , , , , , ,		** *	•	J -		

REPORTED TO Elk Rive **PROJECT** ERA-CE

Elk River Alliance WORK (
ERA-CBWM REPORT

WORK ORDER
REPORTED

21J1168 2021-11-05 16:36

Result	Guideline	RL	Units	Analyzed	Qualifier
2) Matrix: Water San	npled: 2021-10-05 1	4:50, Continu	ued		
0.0068	OG < 0.1	0.0050	mg/L	2021-10-17	
< 0.00020	MAC = 0.006	0.00020	mg/L	2021-10-17	
< 0.00050	MAC = 0.01	0.00050	mg/L	2021-10-17	
0.0247	MAC = 2	0.0050	mg/L	2021-10-17	
< 0.00010	N/A	0.00010	mg/L	2021-10-17	
< 0.00010	N/A	0.00010	mg/L	2021-10-17	
< 0.0500	MAC = 5	0.0500	mg/L	2021-10-17	
0.000025	MAC = 0.005	0.000010	mg/L	2021-10-17	
49.2	None Required	0.20	mg/L	2021-10-17	
0.00052	MAC = 0.05	0.00050	mg/L	2021-10-17	
< 0.00010	N/A	0.00010	mg/L	2021-10-17	
< 0.00040	MAC = 2	0.00040	mg/L	2021-10-17	
< 0.010	AO ≤ 0.3	0.010	mg/L	2021-10-17	
< 0.00020	MAC = 0.005	0.00020	mg/L	2021-10-17	
0.00152	N/A	0.00010	mg/L	2021-10-17	
14.0	None Required	0.010	mg/L	2021-10-17	
0.00042	MAC = 0.12	0.00020	mg/L	2021-10-17	
< 0.000010	MAC = 0.001	0.000010	mg/L	2021-10-15	
0.00138	N/A	0.00010	mg/L	2021-10-17	
< 0.00040	N/A	0.00040	mg/L	2021-10-17	
< 0.050	N/A	0.050	mg/L	2021-10-17	
0.35	N/A	0.10	mg/L	2021-10-17	
0.00099	MAC = 0.05	0.00050	mg/L	2021-10-17	
1.9	N/A	1.0	mg/L	2021-10-17	
< 0.000050	None Required	0.000050	mg/L	2021-10-17	
0.69	AO ≤ 200	0.10	mg/L	2021-10-17	
0.538	7	0.0010	mg/L	2021-10-17	
20.4	N/A	3.0	mg/L	2021-10-17	
< 0.00050	N/A	0.00050	mg/L	2021-10-17	
< 0.000020	N/A	0.000020	mg/L	2021-10-17	
< 0.00010	N/A	0.00010	mg/L	2021-10-17	
< 0.00020	N/A	0.00020	mg/L	2021-10-17	
< 0.0050	N/A			2021-10-17	
< 0.0010	N/A			2021-10-17	
0.000889	MAC = 0.02			2021-10-17	
< 0.0010	N/A			2021-10-17	
< 0.0040	AO ≤ 5			2021-10-17	
< 0.00010	N/A	0.00010	mg/L	2021-10-17	
	0.0068 < 0.00020 < 0.00050	0.0068 OG < 0.1 < 0.00020	0.0068 OG < 0.1 0.0050 < 0.00020	0.0068 OG < 0.1 0.0050 mg/L < 0.00020	0.0068 OG < 0.1 0.0050 mg/L 2021-10-17 < 0.00020

ALX001_20211006_1025 (21J1168-03) | Matrix: Water | Sampled: 2021-10-06 10:25

Anions

Chloride **0.91** AO \leq 250 0.10 mg/L 2021-10-14

REPORTED TO PROJECT

Elk River Alliance ERA-CBWM WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
ALX001_20211006_1025 (21J1168-03) M	latrix: Water San	npled: 2021-10-06	10:25, Contin	ued		
Anions, Continued						
Nitrate (as N)	< 0.010	MAC = 10	0.010	mg/L	2021-10-14	HT1
Nitrite (as N)	< 0.010	MAC = 1	0.010		2021-10-14	HT1
Phosphate (as P)	< 0.0050	N/A	0.0050		2021-10-14	HT1
Sulfate	19.3	AO ≤ 500		mg/L	2021-10-14	
BCMOE Aggregate Hydrocarbons						
EPHw10-19	< 250	N/A	250	μg/L	2021-10-17	
EPHw19-32	< 250	N/A			2021-10-17	
Surrogate: 2-Methylnonane (EPH/F2-4)	102	. 7,7 1	60-140		2021-10-17	
Calculated Parameters						
Hardness, Total (as CaCO3)	181	None Required	0.500	ma/l	N/A	
Nitrate+Nitrite (as N)	< 0.0100	N/A	0.0100		N/A	
Nitrogen, Total	0.0700	N/A	0.0500		N/A	
Dissolved Metals		·			·	
Aluminum, dissolved	< 0.0050	N/A	0.0050	ma/l	2021-10-16	
Antimony, dissolved	< 0.00020	N/A	0.00020		2021-10-16	
Arsenic, dissolved	< 0.00050	N/A	0.00050		2021-10-16	
Barium, dissolved	0.0700	N/A	0.0050		2021-10-16	
Beryllium, dissolved	< 0.00010	N/A	0.00010		2021-10-16	
Bismuth, dissolved	< 0.00010	N/A	0.00010		2021-10-16	
Boron, dissolved	< 0.0500	N/A	0.0500		2021-10-16	
Cadmium, dissolved	< 0.000010	N/A	0.000010		2021-10-16	
Calcium, dissolved	49.5	N/A		mg/L	2021-10-16	
Chromium, dissolved	< 0.00050	N/A	0.00050		2021-10-16	
Cobalt, dissolved	< 0.00010	N/A	0.00010		2021-10-16	
Copper, dissolved	< 0.00040	N/A	0.00040		2021-10-16	
Iron, dissolved	< 0.010	N/A	0.010	mg/L	2021-10-16	
Lead, dissolved	< 0.00020	N/A	0.00020		2021-10-16	
Lithium, dissolved	0.00404	N/A	0.00010	mg/L	2021-10-16	
Magnesium, dissolved	14.0	N/A	0.010	mg/L	2021-10-16	
Manganese, dissolved	0.00046	N/A	0.00020	mg/L	2021-10-16	
Mercury, dissolved	< 0.000010	N/A	0.000010		2021-10-15	
Molybdenum, dissolved	0.00069	N/A	0.00010	mg/L	2021-10-16	
Nickel, dissolved	< 0.00040	N/A	0.00040	mg/L	2021-10-16	
Phosphorus, dissolved	< 0.050	N/A	0.050	mg/L	2021-10-16	
Potassium, dissolved	0.41	N/A	0.10	mg/L	2021-10-16	
Selenium, dissolved	0.00067	N/A	0.00050	mg/L	2021-10-16	
Silicon, dissolved	2.1	N/A	1.0	mg/L	2021-10-16	
Silver, dissolved	< 0.000050	N/A	0.000050	mg/L	2021-10-16	
Sodium, dissolved	1.80	N/A	0.10	mg/L	2021-10-16	
Strontium, dissolved	0.119	N/A	0.0010	mg/L	2021-10-16	
Sulfur, dissolved	5.4	N/A	3.0	mg/L	2021-10-16	

REPORTED TO	Elk River Alliance
DBO IECT	EDA CRIMM

WORK ORDER REPORTED

ALX001_20211006_1025 (21_J1168-03) Matrix: Water Sampled: 2021-10-06 10:25, Continued	Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
Tellurium, dissolved	ALX001_20211006_1025 (21J1168-03) N	Matrix: Water San	npled: 2021-10-06	10:25, Contin	ued		
Thaillum, dissolved	Dissolved Metals, Continued						
Thailium, dissolved	Tellurium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-16	
Thorium, dissolved	· · · · · · · · · · · · · · · · · · ·						
Tin, dissolved	Thorium, dissolved	< 0.00010	N/A			2021-10-16	
Transier, dissolved	Tin, dissolved	< 0.00020	N/A			2021-10-16	
Tungsten, dissolved	Titanium, dissolved	< 0.0050	N/A			2021-10-16	
Uranium, dissolved	Tungsten, dissolved	< 0.0010	N/A			2021-10-16	
Zinc, dissolved		0.000621	N/A	0.000020	mg/L	2021-10-16	
Zirconium, dissolved	Vanadium, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-16	
General Parameters Alkalinity, Total (as CaCO3) 169 N/A 1.0 mg/L 2021-10-12 Alkalinity, Phenolphthalein (as CaCO3) < 1.0	Zinc, dissolved	< 0.0040	N/A	0.0040	mg/L	2021-10-16	
Alkalinity, Total (as CaCO3) 169 N/A 1.0 mg/L 2021-10-12	Zirconium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
Alkalinity, Phenolphthalein (as CaCO3)	General Parameters						
Alkalinity, Phenolphthalein (as CaCO3)	Alkalinity, Total (as CaCO3)	169	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Bicarbonate (as CaCO3) 169 N/A 1.0 mg/L 2021-10-12 Alkalinity, Carbonate (as CaCO3) < 1.0 N/A 1.0 mg/L 2021-10-12 Alkalinity, Hydroxide (as CaCO3) < 1.0 N/A 1.0 mg/L 2021-10-12 Carbon, Total Organic 0.91 N/A 0.50 mg/L 2021-10-12 Carbon, Dissolved Organic 0.90 N/A 0.50 mg/L 2021-10-12 Nitrogen, Total Kjeldahl 0.070 N/A 0.050 mg/L 2021-10-15 Phosphorus, Total (as P) 0.0059 N/A 0.0050 mg/L 2021-10-18 Solids, Total Suspended < 2.0 N/A 2.0 mg/L 2021-10-14 HT1 Total Metals Aluminum, total < 0.0050 OG < 0.1 0.0050 mg/L 2021-10-17 Artimory, total < 0.00050 MAC = 0.006 0.00020 mg/L 2021-10-17 Arsenic, total < 0.00050 MAC = 0.01 0.0050 mg/L 2021-10-17 Beryllium, total < 0.0682 MAC = 2 0.0050 mg/L 2021-10-17	· · · · · · · · · · · · · · · · · · ·		N/A			2021-10-12	
Alkalinity, Carbonate (as CaCO3)		169	N/A				
Alkalinity, Hydroxide (as CaCO3)			N/A			2021-10-12	
Carbon, Total Organic 0.91 N/A 0.50 mg/L 2021-10-12 Carbon, Dissolved Organic 0.90 N/A 0.50 mg/L 2021-10-12 Nitrogen, Total Kjeldahl 0.070 N/A 0.050 mg/L 2021-10-15 Phosphorus, Total (as P) 0.0059 N/A 0.0050 mg/L 2021-10-18 Solids, Total Suspended < 2.0 N/A 0.0050 mg/L 2021-10-14 HT1 Total Metals Aluminum, total < 0.0050 OG < 0.1 0.0050 mg/L 2021-10-17 Antimony, total < 0.00020 MAC = 0.006 0.00020 mg/L 2021-10-17 Arsenic, total < 0.00050 MAC = 0.01 0.0050 mg/L 2021-10-17 Barium, total < 0.00050 MAC = 0.01 0.00050 mg/L 2021-10-17 Beryllium, total < 0.00010 N/A 0.00010 mg/L 2021-10-17 Bismuth, total < 0.00010 N/A 0.00010 mg/L 2021-10-17 Boron, total < 0.00010 MAC = 5 0.0500 mg/L 2021-10-17 Cadmium, tot							
Carbon, Dissolved Organic 0.90 N/A 0.50 mg/L 2021-10-12 Nitrogen, Total Kjeldahl 0.070 N/A 0.050 mg/L 2021-10-15 Phosphorus, Total Gas P) 0.0059 N/A 0.0050 mg/L 2021-10-18 Solids, Total Suspended < 2.0							
Nitrogen, Total Kjeldahl 0.070 N/A 0.050 mg/L 2021-10-15 Phosphorus, Total (as P) 0.0059 N/A 0.0050 mg/L 2021-10-18 Solids, Total Suspended < 2.0						2021-10-12	
Phosphorus, Total (as P) 0.0059 N/A 0.0050 mg/L 2021-10-18 Solids, Total Suspended < 2.0		0.070	N/A			2021-10-15	
Solids, Total Suspended < 2.0 N/A 2.0 mg/L 2021-10-14 HT1 Total Metals Aluminum, total < 0.0050	Phosphorus, Total (as P)	0.0059	N/A			2021-10-18	
Aluminum, total < 0.0050 OG < 0.1 0.0050 mg/L 2021-10-17 Antimony, total < 0.00020	Solids, Total Suspended	< 2.0	N/A			2021-10-14	HT1
Antimony, total < 0.00020 MAC = 0.006 0.00020 mg/L 2021-10-17 Arsenic, total < 0.00050	Total Metals						
Arsenic, total < 0.00050 MAC = 0.01 0.00050 mg/L 2021-10-17 Barium, total 0.0682 MAC = 2 0.0050 mg/L 2021-10-17 Beryllium, total < 0.00010	Aluminum, total	< 0.0050	OG < 0.1	0.0050	mg/L	2021-10-17	
Barium, total 0.0682 MAC = 2 0.0050 mg/L 2021-10-17 Beryllium, total < 0.00010	Antimony, total	< 0.00020	MAC = 0.006	0.00020	mg/L	2021-10-17	
Beryllium, total < 0.00010 N/A 0.00010 mg/L 2021-10-17 Bismuth, total < 0.00010	Arsenic, total	< 0.00050	MAC = 0.01	0.00050	mg/L	2021-10-17	
Bismuth, total < 0.00010 N/A 0.00010 mg/L 2021-10-17 Boron, total < 0.0500	Barium, total	0.0682	MAC = 2	0.0050	mg/L	2021-10-17	
Bismuth, total < 0.00010 N/A 0.00010 mg/L 2021-10-17 Boron, total < 0.0500	Beryllium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Boron, total < 0.0500 MAC = 5 0.0500 mg/L 2021-10-17 Cadmium, total < 0.000010	Bismuth, total	< 0.00010	N/A			2021-10-17	
Calcium, total 45.9 None Required 0.20 mg/L 2021-10-17 Chromium, total < 0.00050	Boron, total	< 0.0500	MAC = 5	0.0500	mg/L	2021-10-17	
Chromium, total < 0.00050 MAC = 0.05 0.00050 mg/L $2021-10-17$ Cobalt, total < 0.00010 N/A 0.00010 mg/L $2021-10-17$ Copper, total < 0.00040 MAC = 2 0.00040 mg/L $2021-10-17$ Iron, total < 0.014 AO ≤ 0.3 0.010 mg/L $2021-10-17$ Lead, total < 0.00020 MAC = 0.005 0.00020 mg/L $2021-10-17$ Lithium, total < 0.00390 N/A 0.00010 mg/L $2021-10-17$ Magnesium, total < 0.00091 MAC = 0.12 < 0.00020 mg/L $< 0.001-10-17$ Mercury, total < 0.000010 MAC = < 0.001 < 0.00010 mg/L $< 0.001-10-15$ Molybdenum, total < 0.00076 N/A < 0.00040 mg/L $< 0.001-10-17$ Nickel, total < 0.00040 N/A < 0.00040 mg/L $< 0.01-10-17$	Cadmium, total	< 0.000010	MAC = 0.005	0.000010	mg/L	2021-10-17	
Cobalt, total < 0.00010 N/A 0.00010 mg/L 2021-10-17 Copper, total < 0.00040	Calcium, total	45.9	None Required	0.20	mg/L	2021-10-17	
Copper, total < 0.00040 MAC = 2 0.00040 mg/L $2021-10-17$ Iron, total 0.014 $AO \le 0.3$ 0.010 mg/L $2021-10-17$ Lead, total < 0.00020 MAC = 0.005 0.00020 mg/L $2021-10-17$ Lithium, total < 0.00390 N/A 0.00010 mg/L $2021-10-17$ Magnesium, total < 0.00091 MAC = < 0.12 < 0.00020 mg/L $< 2021-10-17$ Mercury, total < 0.000010 MAC = < 0.001 < 0.00010 mg/L $< 0.021-10-15$ Molybdenum, total < 0.00076 N/A < 0.00010 mg/L $< 0.021-10-17$ Nickel, total < 0.00040 N/A < 0.00040 mg/L $< 0.201-10-17$	Chromium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2021-10-17	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cobalt, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Lead, total < 0.00020 MAC = 0.005 0.00020 mg/L 2021-10-17 Lithium, total 0.00390 N/A 0.00010 mg/L 2021-10-17 Magnesium, total 13.6 None Required 0.010 mg/L 2021-10-17 Manganese, total 0.00091 MAC = 0.12 0.00020 mg/L 2021-10-17 Mercury, total < 0.00010	Copper, total	< 0.00040	MAC = 2	0.00040	mg/L	2021-10-17	
Lead, total < 0.00020 MAC = 0.005 0.00020 mg/L 2021-10-17 Lithium, total 0.00390 N/A 0.00010 mg/L 2021-10-17 Magnesium, total 13.6 None Required 0.010 mg/L 2021-10-17 Manganese, total 0.00091 MAC = 0.12 0.00020 mg/L 2021-10-17 Mercury, total < 0.00010		0.014	AO ≤ 0.3				
Magnesium, total 13.6 None Required 0.010 mg/L 2021-10-17 Manganese, total 0.00091 MAC = 0.12 0.00020 mg/L 2021-10-17 Mercury, total < 0.000010	Lead, total	< 0.00020	MAC = 0.005	0.00020	mg/L	2021-10-17	
Manganese, total 0.00091 MAC = 0.12 0.00020 mg/L 2021-10-17 Mercury, total < 0.000010	Lithium, total	0.00390	N/A	0.00010	mg/L	2021-10-17	
Mercury, total < 0.000010 MAC = 0.001 0.000010 mg/L 2021-10-15 Molybdenum, total 0.00076 N/A 0.00010 mg/L 2021-10-17 Nickel, total < 0.00040	Magnesium, total	13.6	None Required	0.010	mg/L	2021-10-17	
Molybdenum, total 0.00076 N/A 0.00010 mg/L 2021-10-17 Nickel, total < 0.00040	Manganese, total	0.00091	MAC = 0.12	0.00020	mg/L	2021-10-17	
Nickel, total < 0.00040 N/A 0.00040 mg/L 2021-10-17	Mercury, total	< 0.000010	MAC = 0.001	0.000010	mg/L	2021-10-15	
	Molybdenum, total	0.00076	N/A	0.00010	mg/L	2021-10-17	
Page 8 of 34	Nickel, total	< 0.00040	N/A	0.00040	mg/L		

REPORTED TO Elk River Allia **PROJECT** ERA-CBWM

Analyte

Elk River Alliance WORK C

Guideline

Result

WORK ORDER 21J1168 **REPORTED** 2021-11-05 16:36

Analyzed

Qualifier

RL Units

Total Metals, Continued						
Phosphorus, total	< 0.050	N/A	0.050	mg/L	2021-10-17	
Potassium, total	0.47	N/A	0.10	mg/L	2021-10-17	
Selenium, total	0.00066	MAC = 0.05	0.00050	mg/L	2021-10-17	
Silicon, total	2.2	N/A	1.0	mg/L	2021-10-17	
Silver, total	< 0.000050	None Required	0.000050	mg/L	2021-10-17	
Sodium, total	1.78	AO ≤ 200	0.10	mg/L	2021-10-17	
Strontium, total	0.115	7	0.0010	mg/L	2021-10-17	
Sulfur, total	8.2	N/A	3.0	mg/L	2021-10-17	
Tellurium, total	< 0.00050	N/A	0.00050	mg/L	2021-10-17	
Thallium, total	< 0.000020	N/A	0.000020	mg/L	2021-10-17	
Thorium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Tin, total	< 0.00020	N/A	0.00020	mg/L	2021-10-17	
Titanium, total	< 0.0050	N/A	0.0050	mg/L	2021-10-17	
Tungsten, total	< 0.0010	N/A	0.0010	mg/L	2021-10-17	
Uranium, total	0.000581	MAC = 0.02	0.000020	mg/L	2021-10-17	
Vanadium, total	< 0.0010	N/A	0.0010	mg/L	2021-10-17	
Zinc, total	< 0.0040	AO ≤ 5	0.0040	mg/L	2021-10-17	
Zirconium, total	< 0.00010	N1/A	0.00040			
ALX003_20211006_0935 (21J1168-04) M		N/A npled: 2021-10-06 0	0.00010 9:35	mg/L	2021-10-17	
ALX003_20211006_0935 (21J1168-04) M	latrix: Water San	npled: 2021-10-06 0	9:35			
ALX003_20211006_0935 (21J1168-04) M Anions Chloride		<u> </u>	9:35 0.10	mg/L	2021-10-17 2021-10-14 2021-10-14	HT
ALX003_20211006_0935 (21J1168-04) M Anions Chloride Nitrate (as N)	latrix: Water San 0.64	npled: 2021-10-06 0 AO ≤ 250	9:35	mg/L mg/L	2021-10-14	HT ²
ALX003_20211006_0935 (21J1168-04) M Anions Chloride	0.64 < 0.010	AO ≤ 250 MAC = 10	9:35 0.10 0.010	mg/L mg/L mg/L	2021-10-14 2021-10-14	HT
ALX003_20211006_0935 (21J1168-04) M Anions Chloride Nitrate (as N) Nitrite (as N)	0.64 < 0.010 < 0.010	AO ≤ 250 MAC = 10 MAC = 1	9:35 0.10 0.010 0.010 0.0050	mg/L mg/L mg/L	2021-10-14 2021-10-14 2021-10-14	HT
ALX003_20211006_0935 (21J1168-04) M Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate	0.64 < 0.010 < 0.010 < 0.0050	AO ≤ 250 MAC = 10 MAC = 1 N/A	9:35 0.10 0.010 0.010 0.0050	mg/L mg/L mg/L mg/L	2021-10-14 2021-10-14 2021-10-14 2021-10-14	HT
ALX003_20211006_0935 (21J1168-04) M Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate	0.64 < 0.010 < 0.010 < 0.0050	AO ≤ 250 MAC = 10 MAC = 1 N/A	9:35 0.10 0.010 0.010 0.0050 1.0	mg/L mg/L mg/L mg/L mg/L	2021-10-14 2021-10-14 2021-10-14 2021-10-14	HT
ALX003_20211006_0935 (21J1168-04) Manions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons	0.64 < 0.010 < 0.010 < 0.0050 17.0	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	9:35 0.10 0.010 0.010 0.0050 1.0	mg/L mg/L mg/L mg/L mg/L	2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-14	HT
ALX003_20211006_0935 (21J1168-04) M Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19	0.64 < 0.010 < 0.0050 17.0	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	9:35 0.10 0.010 0.010 0.0050 1.0	mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-14	HT
ALX003_20211006_0935 (21J1168-04) M Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4)	0.64 < 0.010 < 0.0050 17.0 < 250 < 250	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	9:35 0.10 0.010 0.010 0.0050 1.0 250 250	mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17 2021-10-17	HT
ALX003_20211006_0935 (21J1168-04) M Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32	0.64 < 0.010 < 0.0050 17.0 < 250 < 250	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	9:35 0.10 0.010 0.010 0.0050 1.0 250 250	mg/L mg/L mg/L mg/L mg/L µg/L µg/L %	2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17 2021-10-17	HT
ALX003_20211006_0935 (21J1168-04) M Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate 3CMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters	0.64 < 0.010 < 0.0050 17.0 < 250 < 250 101	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	9:35 0.10 0.010 0.0050 1.0 250 250 60-140	mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L %	2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17 2021-10-17 2021-10-17	
ALX003_20211006_0935 (21J1168-04) M Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate 3CMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters Hardness, Total (as CaCO3)	0.64 < 0.010 < 0.0050 17.0 < 250 < 250 101	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required	9:35 0.10 0.010 0.0050 1.0 250 250 250 60-140	mg/L mg/L mg/L mg/L µg/L µg/L µg/L mg/L mg/L	2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17 2021-10-17 2021-10-17	HT
ALX003_20211006_0935 (21J1168-04) Manions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total	0.64 < 0.010 < 0.0050 17.0 < 250 < 250 101 177 < 0.0100	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A	9:35 0.10 0.010 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100	mg/L mg/L mg/L mg/L µg/L µg/L % mg/L mg/L mg/L	2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17 2021-10-17 2021-10-17 N/A N/A	HT
ALX003_20211006_0935 (21J1168-04) Manions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total	0.64 < 0.010 < 0.0050 17.0 < 250 < 250 101 177 < 0.0100	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A	9:35 0.10 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100 0.0500	mg/L mg/L mg/L mg/L µg/L µg/L % mg/L mg/L mg/L mg/L mg/L	2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17 2021-10-17 2021-10-17 N/A N/A N/A	HT
ALX003_20211006_0935 (21J1168-04) Manions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total Dissolved Metals Aluminum, dissolved	0.64 < 0.010 < 0.0050 17.0 < 250 < 250 101 177 < 0.0100 0.0690	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A N/A	9:35 0.10 0.010 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100 0.0500 0.0050	mg/L mg/L mg/L mg/L µg/L µg/L µg/L % mg/L mg/L mg/L mg/L mg/L	2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17 2021-10-17 N/A N/A N/A N/A	HT
ALX003_20211006_0935 (21J1168-04) M Anions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total Dissolved Metals Aluminum, dissolved Antimony, dissolved	0.64 < 0.010 < 0.0050 17.0 < 250 < 250 < 250 101 177 < 0.0100 0.0690	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A N/A N/A N/A	9:35 0.10 0.010 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100 0.0500 0.0050 0.00020	mg/L mg/L mg/L mg/L µg/L µg/L % mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17 2021-10-17 N/A N/A N/A N/A 2021-10-16 2021-10-16	HT
ALX003_20211006_0935 (21J1168-04) Manions Chloride Nitrate (as N) Phosphate (as P) Sulfate BCMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total Dissolved Metals Aluminum, dissolved	0.64 < 0.010 < 0.0050 17.0 < 250 < 250 < 250 101 177 < 0.0100 0.0690 < 0.0050 < 0.00020	AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A N/A	9:35 0.10 0.010 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100 0.0500 0.0050	mg/L mg/L mg/L mg/L µg/L µg/L µg/L % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17 2021-10-17 N/A N/A N/A N/A	HT

REPORTED TO PROJECT

Elk River Alliance ERA-CBWM WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
ALX003_20211006_0935 (21J1168-04)	Matrix: Water Sam	pled: 2021-10-06	09:35, Contin	ued		
Dissolved Metals, Continued						
Bismuth, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
Boron, dissolved	< 0.0500	N/A	0.0500	mg/L	2021-10-16	
Cadmium, dissolved	< 0.000010	N/A	0.000010	mg/L	2021-10-16	
Calcium, dissolved	48.3	N/A	0.20	mg/L	2021-10-16	
Chromium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-16	
Cobalt, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
Copper, dissolved	< 0.00040	N/A	0.00040	mg/L	2021-10-16	
Iron, dissolved	< 0.010	N/A	0.010	mg/L	2021-10-16	
Lead, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-16	
Lithium, dissolved	0.00362	N/A	0.00010	mg/L	2021-10-16	
Magnesium, dissolved	13.8	N/A	0.010	mg/L	2021-10-16	
Manganese, dissolved	0.00134	N/A	0.00020	mg/L	2021-10-16	
Mercury, dissolved	< 0.000010	N/A	0.000010	mg/L	2021-10-15	
Molybdenum, dissolved	0.00067	N/A	0.00010	mg/L	2021-10-16	
Nickel, dissolved	< 0.00040	N/A	0.00040	mg/L	2021-10-16	
Phosphorus, dissolved	< 0.050	N/A	0.050	mg/L	2021-10-16	
Potassium, dissolved	0.41	N/A	0.10	mg/L	2021-10-16	
Selenium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-16	
Silicon, dissolved	2.2	N/A	1.0	mg/L	2021-10-16	
Silver, dissolved	< 0.000050	N/A	0.000050	mg/L	2021-10-16	
Sodium, dissolved	1.61	N/A		mg/L	2021-10-16	
Strontium, dissolved	0.116	N/A	0.0010	mg/L	2021-10-16	
Sulfur, dissolved	4.0	N/A		mg/L	2021-10-16	
Tellurium, dissolved	< 0.00050	N/A	0.00050		2021-10-16	
Thallium, dissolved	< 0.000020	N/A	0.000020	mg/L	2021-10-16	
Thorium, dissolved	< 0.00010	N/A	0.00010		2021-10-16	
Tin, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-16	
Titanium, dissolved	< 0.0050	N/A	0.0050	mg/L	2021-10-16	
Tungsten, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-16	
Uranium, dissolved	0.000539	N/A	0.000020	mg/L	2021-10-16	
Vanadium, dissolved	< 0.0010	N/A	0.0010		2021-10-16	
Zinc, dissolved	< 0.0040	N/A	0.0040		2021-10-16	
Zirconium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
General Parameters						
Alkalinity, Total (as CaCO3)	168	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	N/A		mg/L	2021-10-12	
Alkalinity, Bicarbonate (as CaCO3)	168	N/A		mg/L	2021-10-12	
Alkalinity, Carbonate (as CaCO3)	< 1.0	N/A		mg/L	2021-10-12	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	N/A		mg/L	2021-10-12	
Carbon, Total Organic	0.95	N/A		mg/L	2021-10-12	
Carbon, Dissolved Organic	0.84	N/A		mg/L	2021-10-12	
Nitrogen, Total Kjeldahl	0.069	N/A	0.050	mg/L	2021-10-15	

REPORTED TO EII
PROJECT EF

Elk River Alliance ERA-CBWM WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
ALX003_20211006_0935 (21J1168-04	4) Matrix: Water San	npled: 2021-10-06 0	9:35, Contin	ued		
General Parameters, Continued						
Phosphorus, Total (as P)	< 0.0050	N/A	0.0050	mg/L	2021-10-18	
Solids, Total Suspended	< 2.0	N/A	2.0	mg/L	2021-10-14	HT1
Total Metals						
Aluminum, total	0.0070	OG < 0.1	0.0050	mg/L	2021-10-17	
Antimony, total	< 0.00020	MAC = 0.006	0.00020	mg/L	2021-10-17	
Arsenic, total	< 0.00050	MAC = 0.01	0.00050	mg/L	2021-10-17	
Barium, total	0.0665	MAC = 2	0.0050	mg/L	2021-10-17	
Beryllium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Bismuth, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Boron, total	< 0.0500	MAC = 5	0.0500	mg/L	2021-10-17	
Cadmium, total	0.000015	MAC = 0.005	0.000010	mg/L	2021-10-17	
Calcium, total	46.1	None Required	0.20	mg/L	2021-10-17	
Chromium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2021-10-17	
Cobalt, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Copper, total	< 0.00040	MAC = 2	0.00040	mg/L	2021-10-17	
Iron, total	0.018	AO ≤ 0.3	0.010	mg/L	2021-10-17	
Lead, total	< 0.00020	MAC = 0.005	0.00020	mg/L	2021-10-17	
Lithium, total	0.00365	N/A	0.00010	mg/L	2021-10-17	
Magnesium, total	13.9	None Required	0.010		2021-10-17	
Manganese, total	0.00188	MAC = 0.12	0.00020		2021-10-17	
Mercury, total	< 0.000010	MAC = 0.001	0.000010		2021-10-15	
Molybdenum, total	0.00063	N/A	0.00010		2021-10-17	
Nickel, total	< 0.00040	N/A	0.00040		2021-10-17	
Phosphorus, total	0.053	N/A	0.050		2021-10-17	
Potassium, total	0.48	N/A		mg/L	2021-10-17	
Selenium, total	0.00051	MAC = 0.05	0.00050		2021-10-17	
Silicon, total	2.0	N/A		mg/L	2021-10-17	
Silver, total	< 0.000050	None Required	0.000050		2021-10-17	
Sodium, total	1.59	AO ≤ 200		mg/L	2021-10-17	
Strontium, total	0.111	7	0.0010		2021-10-17	
Sulfur, total	8.4	N/A		mg/L	2021-10-17	
Tellurium, total	< 0.00050	N/A	0.00050		2021-10-17	
Thallium, total	< 0.000020	N/A	0.000020		2021-10-17	
Thorium, total	< 0.00010	N/A	0.00010		2021-10-17	
Tin, total	< 0.00020	N/A	0.00020		2021-10-17	
Titanium, total	< 0.0050	N/A	0.0050		2021-10-17	
Tungsten, total	< 0.0010	N/A	0.0010		2021-10-17	
Uranium, total	0.000524	MAC = 0.02	0.000020		2021-10-17	
Vanadium, total	< 0.0010	N/A	0.0010		2021-10-17	
Zinc, total	< 0.0040	AO ≤ 5	0.0040		2021-10-17	
Zirconium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	

REPORTED TO Elk River Alliance
PROJECT ERA-CBWM

WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifie
C0L001_20211006_1100 (21J1168-05) M	atrix: Water San	npled: 2021-10-06 1	1:00			
Anions						
Chloride	0.35	AO ≤ 250	0.10	mg/L	2021-10-14	
Nitrate (as N)	< 0.010	MAC = 10	0.010		2021-10-14	HT1
Nitrite (as N)	< 0.010	MAC = 1	0.010		2021-10-14	HT1
Phosphate (as P)	< 0.0050	N/A	0.0050		2021-10-14	HT1
Sulfate	3.4	AO ≤ 500		mg/L	2021-10-14	
BCMOE Aggregate Hydrocarbons						
EPHw10-19	< 250	N/A	250	μg/L	2021-10-17	
EPHw19-32	< 250	N/A	250	μg/L	2021-10-17	
Surrogate: 2-Methylnonane (EPH/F2-4)	102		60-140		2021-10-17	
Calculated Parameters						
Hardness, Total (as CaCO3)	90.3	None Required	0.500	mg/L	N/A	
Nitrate+Nitrite (as N)	< 0.0100	N/A	0.0100	mg/L	N/A	
Nitrogen, Total	0.0960	N/A	0.0500	mg/L	N/A	
Dissolved Metals						
Aluminum, dissolved	0.0062	N/A	0.0050	mg/L	2021-10-16	
Antimony, dissolved	< 0.00020	N/A	0.00020		2021-10-16	
Arsenic, dissolved	< 0.00050	N/A	0.00050		2021-10-16	
Barium, dissolved	0.241	N/A	0.0050		2021-10-16	
Beryllium, dissolved	< 0.00010	N/A	0.00010		2021-10-16	
Bismuth, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
Boron, dissolved	< 0.0500	N/A	0.0500	mg/L	2021-10-16	
Cadmium, dissolved	0.000037	N/A	0.000010	mg/L	2021-10-16	
Calcium, dissolved	25.9	N/A		mg/L	2021-10-16	
Chromium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-16	
Cobalt, dissolved	< 0.00010	N/A	0.00010		2021-10-16	
Copper, dissolved	0.00057	N/A	0.00040	mg/L	2021-10-16	
Iron, dissolved	0.011	N/A	0.010	mg/L	2021-10-16	
Lead, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-16	
Lithium, dissolved	0.0106	N/A	0.00010	mg/L	2021-10-16	
Magnesium, dissolved	6.22	N/A	0.010		2021-10-16	
Manganese, dissolved	0.00209	N/A	0.00020	mg/L	2021-10-16	
Mercury, dissolved	< 0.000010	N/A	0.000010		2021-10-15	
Molybdenum, dissolved	0.00063	N/A	0.00010	mg/L	2021-10-16	
Nickel, dissolved	< 0.00040	N/A	0.00040	mg/L	2021-10-16	
Phosphorus, dissolved	< 0.050	N/A	0.050	mg/L	2021-10-16	
Potassium, dissolved	0.64	N/A		mg/L	2021-10-16	
Selenium, dissolved	< 0.00050	N/A	0.00050		2021-10-16	
Silicon, dissolved	1.8	N/A		mg/L	2021-10-16	
Silver, dissolved	< 0.000050	N/A	0.000050		2021-10-16	
Sodium, dissolved	2.59	N/A		mg/L	2021-10-16	
Strontium, dissolved	0.0959	N/A	0.0010	mg/L	2021-10-16	

REPORTED TO Elk River Alliance PROJECT ERA-CBWM

WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
C0L001_20211006_1100 (21J1168-05) M	latrix: Water Sam	npled: 2021-10-06 1	1:00, Continu	ned		
Dissolved Metals, Continued						
Sulfur, dissolved	< 3.0	N/A	3.0	mg/L	2021-10-16	
Tellurium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-16	
Thallium, dissolved	< 0.000020	N/A	0.000020	mg/L	2021-10-16	
Thorium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
Tin, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-16	
Titanium, dissolved	< 0.0050	N/A	0.0050	mg/L	2021-10-16	
Tungsten, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-16	
Uranium, dissolved	0.000150	N/A	0.000020	mg/L	2021-10-16	
Vanadium, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-16	
Zinc, dissolved	< 0.0040	N/A	0.0040	mg/L	2021-10-16	
Zirconium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
General Parameters						
Alkalinity, Total (as CaCO3)	94.4	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	N/A		mg/L	2021-10-12	
Alkalinity, Bicarbonate (as CaCO3)	94.4	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Carbonate (as CaCO3)	< 1.0	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	N/A		mg/L	2021-10-12	
Carbon, Total Organic	2.74	N/A	0.50	mg/L	2021-10-12	
Carbon, Dissolved Organic	2.68	N/A	0.50	mg/L	2021-10-12	
Nitrogen, Total Kjeldahl	0.096	N/A	0.050	mg/L	2021-10-15	
Phosphorus, Total (as P)	0.0108	N/A	0.0050	mg/L	2021-10-18	
Solids, Total Suspended	< 2.0	N/A	2.0	mg/L	2021-10-14	HT1
Total Metals						
Aluminum, total	0.0118	OG < 0.1	0.0050	mg/L	2021-10-17	
Antimony, total	< 0.00020	MAC = 0.006	0.00020	mg/L	2021-10-17	
Arsenic, total	0.00050	MAC = 0.01	0.00050		2021-10-17	
Barium, total	0.261	MAC = 2	0.0050	mg/L	2021-10-17	
Beryllium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Bismuth, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Boron, total	< 0.0500	MAC = 5	0.0500	mg/L	2021-10-17	
Cadmium, total	0.000036	MAC = 0.005	0.000010	mg/L	2021-10-17	
Calcium, total	28.1	None Required	0.20	mg/L	2021-10-17	
Chromium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2021-10-17	
Cobalt, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Copper, total	0.00075	MAC = 2	0.00040	mg/L	2021-10-17	
Iron, total	0.019	AO ≤ 0.3	0.010	mg/L	2021-10-17	
Lead, total	< 0.00020	MAC = 0.005	0.00020	mg/L	2021-10-17	
Lithium, total	0.0115	N/A	0.00010	mg/L	2021-10-17	
Magnesium, total	6.86	None Required	0.010	mg/L	2021-10-17	
Manganese, total	0.00314	MAC = 0.12	0.00020	mg/L	2021-10-17	
Mercury, total	< 0.000010	MAC = 0.001	0.000010	mg/L	2021-10-15	
Molybdenum, total	0.00116	N/A	0.00010	mg/L	2021-10-17	ane 13 of

REPORTED TO PROJECT

Analyte

Elk River Alliance ERA-CBWM

Result

Guideline

WORK ORDER REPORTED

RL Units

21J1168 2021-11-05 16:36

Qualifier

Analyzed

COL001_20211006_1100 (21J1168-05) M	latrix: Water Sam	npled: 2021-10-06 11	l:00, Continu	ued		
otal Metals, Continued						
Nickel, total	0.00050	N/A	0.00040	mg/L	2021-10-17	
Phosphorus, total	< 0.050	N/A	0.050	mg/L	2021-10-17	
Potassium, total	0.78	N/A	0.10	mg/L	2021-10-17	
Selenium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2021-10-17	
Silicon, total	1.8	N/A	1.0	mg/L	2021-10-17	
Silver, total	< 0.000050	None Required	0.000050	mg/L	2021-10-17	
Sodium, total	2.86	AO ≤ 200	0.10	mg/L	2021-10-17	
Strontium, total	0.105	7	0.0010	mg/L	2021-10-17	
Sulfur, total	3.3	N/A	3.0	mg/L	2021-10-17	
Tellurium, total	< 0.00050	N/A	0.00050	mg/L	2021-10-17	
Thallium, total	< 0.000020	N/A	0.000020	mg/L	2021-10-17	
Thorium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Tin, total	< 0.00020	N/A	0.00020	mg/L	2021-10-17	
Titanium, total	< 0.0050	N/A	0.0050	mg/L	2021-10-17	
Tungsten, total	< 0.0010	N/A	0.0010	mg/L	2021-10-17	
Uranium, total	0.000164	MAC = 0.02	0.000020	mg/L	2021-10-17	
	< 0.0010	N/A	0.0010	ma/l	2021-10-17	
Vanadium, total	< 0.0010	14/73		1119/ =	2021-10-17	
· · · · · · · · · · · · · · · · · · ·	< 0.0040	AO ≤ 5	0.0040		2021-10-17	
Vanadium, total Zinc, total Zirconium, total COL003_20211006_0900 (21J1168-06) M	< 0.0040 < 0.00010	AO ≤ 5 N/A	0.0040 0.00010	mg/L		
Zinc, total Zirconium, total COL003_20211006_0900 (21J1168-06) Manions	< 0.0040 < 0.00010 latrix: Water Sam	AO ≤ 5 N/A npled: 2021-10-06 09	0.0040 0.00010 9:00	mg/L mg/L	2021-10-17 2021-10-17	
Zinc, total Zirconium, total OL003_20211006_0900 (21J1168-06) M nions Chloride	< 0.0040 < 0.00010 latrix: Water Sam 0.18	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250	0.0040 0.00010 9:00	mg/L mg/L	2021-10-17 2021-10-17 2021-10-14	
Zinc, total Zirconium, total OL003_20211006_0900 (21J1168-06) M nions Chloride Nitrate (as N)	< 0.0040 < 0.00010 latrix: Water San 0.18 < 0.010	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10	0.0040 0.00010 9:00 0.10 0.010	mg/L mg/L mg/L mg/L	2021-10-17 2021-10-17 2021-10-14 2021-10-14	
Zinc, total Zirconium, total OL003_20211006_0900 (21J1168-06) M nions Chloride Nitrate (as N) Nitrite (as N)	< 0.0040 < 0.00010 latrix: Water Sam 0.18 < 0.010 < 0.010	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10 MAC = 1	0.0040 0.00010 9:00 0.10 0.010 0.010	mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-17 2021-10-14 2021-10-14 2021-10-14	HT
Zinc, total Zirconium, total OL003_20211006_0900 (21J1168-06) Monions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P)	< 0.0040 < 0.00010 latrix: Water San 0.18 < 0.010 < 0.010 < 0.0050	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10 MAC = 1 N/A	0.0040 0.00010 9:00 0.10 0.010 0.010 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14	HT
Zinc, total Zirconium, total OL003_20211006_0900 (21J1168-06) Monions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P)	< 0.0040 < 0.00010 latrix: Water Sam 0.18 < 0.010 < 0.010	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10 MAC = 1	0.0040 0.00010 9:00 0.10 0.010 0.010 0.0050	mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-17 2021-10-14 2021-10-14 2021-10-14	HT
Zinc, total Zirconium, total OL003_20211006_0900 (21J1168-06) Monions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate	< 0.0040 < 0.00010 latrix: Water San 0.18 < 0.010 < 0.010 < 0.0050	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10 MAC = 1 N/A	0.0040 0.00010 9:00 0.10 0.010 0.010 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14	HT
Zinc, total Zirconium, total OL003_20211006_0900 (21J1168-06) Monions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons	< 0.0040 < 0.00010 latrix: Water San 0.18 < 0.010 < 0.010 < 0.0050	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10 MAC = 1 N/A	0.0040 0.00010 9:00 0.10 0.010 0.0050 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14	HT
Zinc, total Zirconium, total COL003_20211006_0900 (21J1168-06) Monions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CCMOE Aggregate Hydrocarbons	< 0.0040 < 0.00010 latrix: Water Sam 0.18 < 0.010 < 0.010 < 0.0050 1.6	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	0.0040 0.00010 9:00 0.10 0.010 0.0050 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-14	HT
Zinc, total Zirconium, total COL003_20211006_0900 (21J1168-06) Manions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons EPHw10-19	< 0.0040 < 0.00010 latrix: Water Sam 0.18 < 0.010 < 0.010 < 0.0050 1.6	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	0.0040 0.00010 9:00 0.10 0.010 0.0050 1.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17	HT′
Zinc, total Zinconium, total Zinconium, total	< 0.0040 < 0.00010 latrix: Water Sam 0.18 < 0.010 < 0.010 < 0.0050 1.6 < 250 < 250	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	0.0040 0.00010 9:00 0.10 0.010 0.0050 1.0 250	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17	HT′
Zinc, total Zirconium, total OL003_20211006_0900 (21J1168-06) Monions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Valculated Parameters	< 0.0040 < 0.00010 latrix: Water Sam 0.18 < 0.010 < 0.010 < 0.0050 1.6 < 250 < 250	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500	0.0040 0.00010 9:00 0.10 0.010 0.0050 1.0 250	mg/L mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L %	2021-10-17 2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17	HT′
Zinc, total Zirconium, total OL003_20211006_0900 (21J1168-06) Monions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters Hardness, Total (as CaCO3)	< 0.0040 < 0.00010 latrix: Water San 0.18 < 0.010 < 0.010 < 0.0050 1.6 < 250 < 250 100	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A	0.0040 0.00010 9:00 0.10 0.010 0.0050 1.0 250 250 60-140	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L %	2021-10-17 2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17 2021-10-17 2021-10-17	HT′
Zinc, total Zirconium, total Zirconium, total	< 0.0040 < 0.00010 latrix: Water San 0.18 < 0.010 < 0.010 < 0.0050 1.6 < 250 < 250 100	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required	0.0040 0.00010 9:00 0.10 0.010 0.0050 1.0 250 250 60-140	mg/L mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L mg/L	2021-10-17 2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17 2021-10-17 2021-10-17	HT′
Zinc, total Zirconium, total Zirconium, total OL003_20211006_0900 (21J1168-06) Monions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate CMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4) Calculated Parameters Hardness, Total (as CaCO3) Nitrate+Nitrite (as N) Nitrogen, Total	< 0.0040 < 0.00010 latrix: Water Sam 0.18 < 0.010 < 0.010 < 0.0050 1.6 < 250 < 250 100 28.2 < 0.0100	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A	0.0040 0.00010 9:00 0.10 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100	mg/L mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L mg/L	2021-10-17 2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17 2021-10-17 2021-10-17	HT′
Zinc, total Zirconium,	< 0.0040 < 0.00010 latrix: Water Sam 0.18 < 0.010 < 0.010 < 0.0050 1.6 < 250 < 250 100 28.2 < 0.0100	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A	0.0040 0.00010 9:00 0.10 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L % mg/L mg/L mg/L mg/L	2021-10-17 2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17 2021-10-17 2021-10-17	HT′
Zinc, total Zirconium,	< 0.0040 < 0.00010 latrix: Water Sam 0.18 < 0.010 < 0.0050 1.6 < 250 < 250	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A N/A	0.0040 0.00010 9:00 0.10 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100 0.0500	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L % mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17 2021-10-17 2021-10-17 N/A N/A N/A	HT′
Zinc, total Zirconium, total COL003_20211006_0900 (21J1168-06) Manions Chloride Nitrate (as N) Nitrite (as N) Phosphate (as P) Sulfate COMOE Aggregate Hydrocarbons EPHw10-19 EPHw19-32	< 0.0040 < 0.00010 latrix: Water Sam 0.18 < 0.010 < 0.010 < 0.0050 1.6 < 250 < 250	AO ≤ 5 N/A npled: 2021-10-06 09 AO ≤ 250 MAC = 10 MAC = 1 N/A AO ≤ 500 N/A N/A None Required N/A N/A N/A	0.0040 0.00010 9:00 0.10 0.010 0.0050 1.0 250 250 60-140 0.500 0.0100 0.0500	mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L mg/L mg/L	2021-10-17 2021-10-17 2021-10-14 2021-10-14 2021-10-14 2021-10-14 2021-10-17 2021-10-17 2021-10-17 N/A N/A N/A 2021-10-16	HT1 HT1

REPORTED TO PROJECT

Elk River Alliance ERA-CBWM WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
C0L003_20211006_0900 (21J1168-06)	Matrix: Water Sam	pled: 2021-10-06	09:00, Continu	ued		
Dissolved Metals, Continued						
Beryllium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
Bismuth, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
Boron, dissolved	< 0.0500	N/A	0.0500	mg/L	2021-10-16	
Cadmium, dissolved	0.000054	N/A	0.000010	mg/L	2021-10-16	
Calcium, dissolved	8.53	N/A	0.20	mg/L	2021-10-16	
Chromium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-16	
Cobalt, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
Copper, dissolved	0.00055	N/A	0.00040	mg/L	2021-10-16	
Iron, dissolved	0.018	N/A	0.010	mg/L	2021-10-16	
Lead, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-16	
Lithium, dissolved	0.00021	N/A	0.00010	mg/L	2021-10-16	
Magnesium, dissolved	1.67	N/A	0.010	mg/L	2021-10-16	
Manganese, dissolved	0.00039	N/A	0.00020	mg/L	2021-10-16	
Mercury, dissolved	< 0.000010	N/A	0.000010	mg/L	2021-10-15	
Molybdenum, dissolved	0.00017	N/A	0.00010	mg/L	2021-10-16	
Nickel, dissolved	0.00064	N/A	0.00040	mg/L	2021-10-16	
Phosphorus, dissolved	< 0.050	N/A	0.050	mg/L	2021-10-16	
Potassium, dissolved	0.27	N/A	0.10	mg/L	2021-10-16	
Selenium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-16	
Silicon, dissolved	1.4	N/A	1.0	mg/L	2021-10-16	
Silver, dissolved	< 0.000050	N/A	0.000050	mg/L	2021-10-16	
Sodium, dissolved	0.19	N/A		mg/L	2021-10-16	
Strontium, dissolved	0.0127	N/A	0.0010	mg/L	2021-10-16	
Sulfur, dissolved	< 3.0	N/A		mg/L	2021-10-16	
Tellurium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-16	
Thallium, dissolved	< 0.000020	N/A	0.000020		2021-10-16	
Thorium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
Tin, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-16	
Titanium, dissolved	< 0.0050	N/A	0.0050	mg/L	2021-10-16	
Tungsten, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-16	
Uranium, dissolved	0.000036	N/A	0.000020		2021-10-16	
Vanadium, dissolved	< 0.0010	N/A	0.0010		2021-10-16	
Zinc, dissolved	< 0.0040	N/A	0.0040		2021-10-16	
Zirconium, dissolved	0.00019	N/A	0.00010	mg/L	2021-10-16	
General Parameters						
Alkalinity, Total (as CaCO3)	27.6	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Bicarbonate (as CaCO3)	27.6	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Carbonate (as CaCO3)	< 1.0	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	N/A	1.0	mg/L	2021-10-12	
Carbon, Total Organic	4.00	N/A	0.50	mg/L	2021-10-12	
Carbon, Dissolved Organic	3.96	N/A	0.50	mg/L	2021-10-12	

REPORTED TO PROJECT

Elk River Alliance ERA-CBWM WORK ORDER REPORTED

COLLO03_20211006_0900 (21J1168-06) Matrix: Water Sampled: 2021-10-06 09-00, Continued	Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
Nitrogen, Total Kjeldahl 0.213 N/A 0.050 mg/L 2021-10-15 Phosphorus, Total (as P) 0.0106 N/A 0.0050 mg/L 2021-10-18 Solidis, Total Suspended <2.0 N/A 2.0 mg/L 2021-10-18 Total Metals N/A 0.0050 mg/L 2021-10-17 Autminum, total 0.0605 0.0060 MAC = 0.0060 0.00020 mg/L 2021-10-17 Autminum, total 0.0605 MAC = 0.006 0.00020 mg/L 2021-10-17 Autminum, total 0.0057 MAC = 0.006 0.00020 mg/L 2021-10-17 Barium, total 0.0077 MAC = 2 0.0050 mg/L 2021-10-17 Barium, total 0.0077 MAC = 2 0.0050 mg/L 2021-10-17 Barium, total 0.00010 N/A 0.00010 mg/L 2021-10-17 Bismuth, total 0.00010 N/A 0.00010 mg/L 2021-10-17 Bismuth, total 0.00006 MAC = 0.0050 0.00000 mg/L 2021-10-17 Bismuth, total 0.00006 MAC = 0.0050 0.00000 mg/L 2021-10-17 Bismuth, total 0.00006 MAC = 0.0050 0.00000 mg/L 2021-10-17 Bismuth, total 0.00006 MAC = 0.0050 0.00000 mg/L 2021-10-17 Cadmium, total 0.00006 MAC = 0.00000 mg/L 2021-10-17 Chromium, total 0.00006 MAC = 0.00000 mg/L 2021-10-17 Chromium, total 0.00007 MAC = 0.00000 mg/L 2021-10-17 Coper, total 0.00007 MAC = 0.00000 mg/L 2021-10-17 Lead, total 0.00008 N/A 0.00010 mg/L 2021-10-17 Lead, total 0.00001 MAC = 0.00000 mg/L 2021-10-17 Lead, total 0.00001 MAC = 0.00000 mg/L 2021-10-17 Lithium, total 0.00001 MAC = 0.00000 mg/L 2021-10-17 Manganesium, total 0.00001 MAC = 0.0001 mg/L 2021-10-17 Manganese, total 0.00001 MAC = 0.0001 mg/L 2021-10-17 Manganese, total 0.00001 MAC = 0.00000 mg/L 2021-10-17 Manganese, total 0.00001 MAC = 0.00000 mg/L 2021-10-17 Manganese, total 0.00000 MAC = 0.00000 mg/L 2021-10-17 Manganese, total 0.00000 MAC = 0.00000 mg/L 2021-10-17 Manganese, total 0.00000 MAC = 0.00000 mg/L 2021-10-17 Manganese, to	C0L003_20211006_0900 (21J1168-06	6) Matrix: Water Sa	mpled: 2021-10-06	09:00, Contin	ued		
Phosphorus, Total (as P)	General Parameters, Continued						
Solids, Total Suspended < 2.0 N/A 2.0 mg/L 2021-10-14 HTI Total Metals S S S S S Color of	Nitrogen, Total Kjeldahl	0.213	N/A	0.050	mg/L	2021-10-15	
Total Motals Aluminum, total 0.0605 OG < 0.1 0.0050 mg/L 2021-10-17 Antimony, total < 0.00020	Phosphorus, Total (as P)	0.0106	N/A	0.0050	mg/L	2021-10-18	
Aluminum, total 0.0605 OG < 0.1 0.00020 mg/L 2021-10-17 Antimony, total < 0.00020	Solids, Total Suspended	< 2.0	N/A	2.0	mg/L	2021-10-14	HT1
Antimony, total < 0.00020 MAC = 0.006 0.00020 mg/L 2021-10-17 Arsenic, total < 0.00050 MAC = 0.01 0.00050 mg/L 2021-10-17 Barlum, total 0.0577 MAC = 2 0.0050 mg/L 2021-10-17 Beryllium, total < 0.00010 N/A 0.00010 mg/L 2021-10-17 Bismuth, total < 0.00010 N/A 0.00010 mg/L 2021-10-17 Bismuth, total < 0.00010 N/A 0.00010 mg/L 2021-10-17 Bismuth, total < 0.00500 MAC = 5 0.0500 mg/L 2021-10-17 Cadmium, total 0.00062 MAC = 0.0550 mg/L 2021-10-17 Cadmium, total 0.00062 MAC = 0.0050 mg/L 2021-10-17 Calcium, total 0.00060 MAC = 0.05 0.000010 mg/L 2021-10-17 Calcium, total 0.00070 MAC = 0.05 0.000010 mg/L 2021-10-17 Cobalt, total 0.00072 MAC = 2 0.00040 mg/L 2021-10-17 Iron, total 0.00072 MAC = 2 0.00040 mg/L 2021-10-17 Lead, total 0.0003 AO ≤ 3 0.010 mg/L 2021-10-17 Lithium, total 0.0003 MAC = 0.005 0.00020 mg/L 2021-10-17 Lithium, total 0.0003 MAC = 0.0050 mg/L 2021-10-17 Margnesium, total 0.0003 MAC = 0.0050 mg/L 2021-10-17 Margnesium, total 0.00070 MAC = 0.0000000 mg/L 2021-10-17 Mercury, total 0.00070 MAC = 0.010 mg/L 2021-10-17 Mercury, total 0.00010 MAC = 0.001 mg/L 2021-10-17 Mercury, total 0.00010 MAC = 0.001 mg/L 2021-10-17 Mercury, total 0.00010 MAC = 0.001 0.000010 mg/L 2021-10-17 Mercury, total 0.00010 MAC = 0.001 0.000010 mg/L 2021-10-17 Mercury, total 0.00010 MAC = 0.001 0.00010 mg/L 2021-10-17 Mercury, total 0.00010 MAC = 0.00010 mg/L 2021-10-17 Mickel, total 0.00060 MAC = 0.000000 mg/L 2021-10-17 Phesphorus, total 0.00060 MAC = 0.000000 mg/L 2021-10-17 Phesphorus, total 0.00060 MAC = 0.0000000 mg/L 2021-10-17 Selenium, total 0.00060 MAC = 0.000000 mg/L 2021-10-17 Silicon, total 0.00060 MAC = 0.0000000 mg/L 2021-10-17 Titotal 0.00060 NAC = 0.000000 mg/L 2021-10-17 Titorium, total 0.000000 NAC = 0.000000 mg/L 2021-10-17 Titorium, total 0.000000 NAC = 0.000000 mg/L 2021-10-17 Titorium, total 0.000000 NAC = 0.0	Total Metals						
Arsenic, total < 0.00050 MAC = 0.01 0.00050 mg/L 2021-10-17 Barlum, total 0.0577 MAC = 2 0.0050 mg/L 2021-10-17 Beryllum, total < 0.00010	Aluminum, total	0.0605	OG < 0.1	0.0050	mg/L	2021-10-17	
Barium, total 0,0577 MAC = 2 0.0050 mg/L 2021-10-17 Beryllium, total < 0,00010	Antimony, total	< 0.00020	MAC = 0.006	0.00020	mg/L	2021-10-17	
Beryllium, total < 0.00010 N/A 0.00010 mg/L 2021-10-17 Bismuth, total < 0.00010	Arsenic, total	< 0.00050	MAC = 0.01	0.00050	mg/L	2021-10-17	
Bismuth, total	Barium, total	0.0577	MAC = 2	0.0050	mg/L	2021-10-17	
Boron, total < 0.0500 MAC = 5 0.0500 mg/L 2021-10-17 Cadmium, total 0.00062 MAC = 0.005 0.000010 mg/L 2021-10-17 Calcium, total 9.22 None Required 0.20 mg/L 2021-10-17 Chromium, total < 0.00050 MAC = 0.05 0.00050 mg/L 2021-10-17 Cobalt, total < 0.00010 N/A 0.00010 mg/L 2021-10-17 Copper, total 0.023 AO ≤ 0.3 0.010 mg/L 2021-10-17 Lead, total < 0.0020 MAC = 0.005 0.0020 mg/L 2021-10-17 Lead, total < 0.00020 MAC = 0.005 0.00020 mg/L 2021-10-17 Lead, total < 0.00020 MAC = 0.005 0.00020 mg/L 2021-10-17 Lead, total < 0.00020 MAC = 0.005 0.00020 mg/L 2021-10-17 Magnesium, total < 0.00038 N/A 0.0010 mg/L 2021-10-17 Magnesium, total < 0.00070 MAC = 0.12 0.00020 mg/L 2021-10-17 Mercury, total < 0.00026 N/A <t< td=""><td>Beryllium, total</td><td>< 0.00010</td><td>N/A</td><td>0.00010</td><td>mg/L</td><td>2021-10-17</td><td></td></t<>	Beryllium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Cadmium, total 0.00062 MAC = 0.005 0.00010 mg/L 2021-10-17 Calcium, total 9.22 None Required 0.20 mg/L 2021-10-17 Chromium, total < 0.00050	Bismuth, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Calcium, total 9.22 None Required 0.20 mg/L 2021-10-17 Chromium, total < 0.00050	Boron, total	< 0.0500	MAC = 5	0.0500	mg/L	2021-10-17	
Chromium, total < 0.00050 MAC = 0.05 0.00050 mg/L 2021-10-17 Cobalt, total < 0.00010	Cadmium, total	0.000062	MAC = 0.005	0.000010	mg/L	2021-10-17	
Cobalt, total < 0.00010 N/A 0.00010 mg/L 2021-10-17 Copper, total 0.00072 MAC = 2 0.00040 mg/L 2021-10-17 Iron, total 0.023 AO ≤ 0.3 0.010 mg/L 2021-10-17 Lead, total < 0.00020	Calcium, total	9.22	None Required	0.20	mg/L	2021-10-17	
Copper, total 0.00072 MAC = 2 0.00040 mg/L 2021-10-17 Iron, total 0.023 AO ≤ 0.3 0.010 mg/L 2021-10-17 Lead, total < 0.00020	Chromium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2021-10-17	
Iron, total 0.023 AO ≤ 0.3 0.010 mg/L 2021-10-17 Lead, total < 0.00020 MAC = 0.005 0.00020 mg/L 2021-10-17 Lithium, total 0.00038 N/A 0.00010 mg/L 2021-10-17 Magnesium, total 1.77 None Required 0.010 mg/L 2021-10-17 Manganese, total 0.00070 MAC = 0.12 0.00020 mg/L 2021-10-17 Mercury, total < 0.00010 MAC = 0.001 0.000010 mg/L 2021-10-15 Molydenum, total 0.00026 N/A 0.00010 mg/L 2021-10-17 Nickel, total 0.00081 N/A 0.00010 mg/L 2021-10-17 Phosphorus, total 0.054 N/A 0.050 mg/L 2021-10-17 Potassium, total 0.054 N/A 0.050 mg/L 2021-10-17 Selenium, total 0.054 N/A 0.050 mg/L 2021-10-17 Selenium, total 0.056 N/A 1.0 mg/L 2021-10-17 Silver, total 0.00050 MAC = 0.05 0.00050 mg/L 2021-10-17	Cobalt, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Lead, total < 0.00020 MAC = 0.005 0.00020 mg/L 2021-10-17 Lithium, total 0.00038 N/A 0.00010 mg/L 2021-10-17 Magnesium, total 1.77 None Required 0.010 mg/L 2021-10-17 Manganese, total 0.00070 MAC = 0.12 0.00020 mg/L 2021-10-15 Mercury, total < 0.00010	Copper, total	0.00072	MAC = 2	0.00040	mg/L	2021-10-17	
Lithium, total 0.00038 N/A 0.00010 mg/L 2021-10-17 Magnesium, total 1.77 None Required 0.010 mg/L 2021-10-17 Manganese, total 0.00070 MAC = 0.12 0.00020 mg/L 2021-10-17 Mercury, total < 0.000010	Iron, total	0.023	AO ≤ 0.3	0.010	mg/L	2021-10-17	
Magnesium, total 1.77 None Required 0.010 mg/L 2021-10-17 Manganese, total 0.00070 MAC = 0.12 0.00020 mg/L 2021-10-17 Mercury, total < 0.000010 MAC = 0.001 0.00001 mg/L 2021-10-15 Molybdenum, total 0.00026 N/A 0.00010 mg/L 2021-10-17 Nickel, total 0.0081 N/A 0.0050 mg/L 2021-10-17 Phosphorus, total 0.054 N/A 0.050 mg/L 2021-10-17 Potassium, total 0.36 N/A 0.10 mg/L 2021-10-17 Selenium, total 0.36 N/A 0.10 mg/L 2021-10-17 Silicon, total 1.6 N/A 1.0 mg/L 2021-10-17 Siliver, total < 0.00050 MAC = 0.05 0.00050 mg/L 2021-10-17 Silver, total < 0.00050 None Required 0.00050 mg/L 2021-10-17 Solium, total < 0.23 AO ≤ 200 0.10 mg/L 2021-10-17 Sulfur, total < 0.0136 7 0.010 mg/L 2021-10-17	Lead, total	< 0.00020	MAC = 0.005	0.00020	mg/L	2021-10-17	
Manganese, total 0.00070 MAC = 0.12 0.00020 mg/L 2021-10-17 Mercury, total < 0.000010	Lithium, total	0.00038	N/A	0.00010	mg/L	2021-10-17	
Mercury, total < 0.000010 MAC = 0.001 0.000010 mg/L 2021-10-15 Molybdenum, total 0.00026 N/A 0.00010 mg/L 2021-10-17 Nickel, total 0.00081 N/A 0.00040 mg/L 2021-10-17 Phosphorus, total 0.054 N/A 0.050 mg/L 2021-10-17 Potassium, total 0.36 N/A 0.10 mg/L 2021-10-17 Selenium, total < 0.00050	Magnesium, total	1.77	None Required	0.010	mg/L	2021-10-17	
Molybdenum, total 0.00026 N/A 0.00010 mg/L 2021-10-17 Nickel, total 0.00081 N/A 0.00040 mg/L 2021-10-17 Phosphorus, total 0.054 N/A 0.050 mg/L 2021-10-17 Potassium, total 0.36 N/A 0.10 mg/L 2021-10-17 Selenium, total < 0.00050	Manganese, total	0.00070	MAC = 0.12	0.00020	mg/L	2021-10-17	
Nickel, total 0.00081 N/A 0.00040 mg/L 2021-10-17 Phosphorus, total 0.054 N/A 0.050 mg/L 2021-10-17 Potassium, total 0.36 N/A 0.10 mg/L 2021-10-17 Selenium, total < 0.00050	Mercury, total	< 0.000010	MAC = 0.001	0.000010	mg/L	2021-10-15	
Phosphorus, total 0.054 N/A 0.050 mg/L 2021-10-17 Potassium, total 0.36 N/A 0.10 mg/L 2021-10-17 Selenium, total < 0.00050	Molybdenum, total	0.00026	N/A	0.00010	mg/L	2021-10-17	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nickel, total	0.00081	N/A	0.00040	mg/L	2021-10-17	
Selenium, total < 0.00050 MAC = 0.05 0.00050 mg/L 2021-10-17 Silicon, total 1.6 N/A 1.0 mg/L 2021-10-17 Silver, total < 0.000050	Phosphorus, total	0.054	N/A	0.050	mg/L	2021-10-17	
Silicon, total 1.6 N/A 1.0 mg/L 2021-10-17 Silver, total < 0.000050	Potassium, total	0.36	N/A	0.10	mg/L	2021-10-17	
Silver, total < 0.000050 None Required 0.000050 mg/L 2021-10-17 Sodium, total 0.23 AO ≤ 200 0.10 mg/L 2021-10-17 Strontium, total 0.0136 7 0.0010 mg/L 2021-10-17 Sulfur, total < 3.0	Selenium, total	< 0.00050	MAC = 0.05	0.00050	mg/L	2021-10-17	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Silicon, total	1.6	N/A	1.0	mg/L	2021-10-17	
Strontium, total 0.0136 7 0.0010 mg/L 2021-10-17 Sulfur, total < 3.0	Silver, total	< 0.000050	None Required	0.000050	mg/L	2021-10-17	
Sulfur, total < 3.0 N/A 3.0 mg/L 2021-10-17 Tellurium, total < 0.00050	Sodium, total	0.23	AO ≤ 200	0.10	mg/L	2021-10-17	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Strontium, total	0.0136	7	0.0010	mg/L	2021-10-17	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sulfur, total	< 3.0	N/A	3.0	mg/L	2021-10-17	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tellurium, total	< 0.00050	N/A	0.00050	mg/L	2021-10-17	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Thallium, total	< 0.000020	N/A	0.000020	mg/L	2021-10-17	
Titanium, total < 0.0050 N/A 0.0050 mg/L 2021-10-17 Tungsten, total < 0.0010	Thorium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Tungsten, total < 0.0010 N/A 0.0010 mg/L 2021-10-17 Uranium, total 0.000035 MAC = 0.02 0.000020 mg/L 2021-10-17 Vanadium, total < 0.0010	Tin, total	< 0.00020	N/A	0.00020	mg/L	2021-10-17	
Uranium, total 0.000035 MAC = 0.02 0.000020 mg/L 2021-10-17 Vanadium, total < 0.0010	Titanium, total	< 0.0050	N/A	0.0050	mg/L	2021-10-17	
Vanadium, total < 0.0010 N/A 0.0010 mg/L 2021-10-17 Zinc, total 0.0139 AO ≤ 5 0.0040 mg/L 2021-10-17	Tungsten, total	< 0.0010	N/A	0.0010	mg/L	2021-10-17	
Zinc, total 0.0139 AO ≤ 5 0.0040 mg/L 2021-10-17	Uranium, total	0.000035	MAC = 0.02	0.000020	mg/L	2021-10-17	
	Vanadium, total	< 0.0010	N/A	0.0010	mg/L	2021-10-17	
Zirconium, total 0.00022 N/A 0.00010 mg/L 2021-10-17	Zinc, total	0.0139	AO ≤ 5	0.0040	mg/L	2021-10-17	
	Zirconium, total	0.00022	N/A	0.00010	mg/L	2021-10-17	

REPORTED TO PROJECT

Elk River Alliance ERA-CBWM

WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed Qualific
FLD001_20211005_1455 (21J1168-0	7) Matrix: Water Sar	npled: 2021-10-05	14:55		
Anions					
Chloride	< 0.10	AO ≤ 250	0.10	mg/L	2021-10-14
Nitrate (as N)	< 0.010	MAC = 10	0.010		2021-10-14 HT1
Nitrite (as N)	< 0.010	MAC = 1	0.010		2021-10-14 HT1
Phosphate (as P)	< 0.0050	N/A	0.0050		2021-10-14 HT1
Sulfate	< 1.0	AO ≤ 500		mg/L	2021-10-14
Calculated Parameters					
Hardness, Total (as CaCO3)	< 0.500	None Required	0.500	mg/L	N/A
Nitrate+Nitrite (as N)	< 0.0100	N/A	0.0100	mg/L	N/A
Nitrogen, Total	< 0.0500	N/A	0.0500	mg/L	N/A
Dissolved Metals					
Aluminum, dissolved	< 0.0050	N/A	0.0050	mg/L	2021-10-16
Antimony, dissolved	< 0.00020	N/A	0.00020		2021-10-16
Arsenic, dissolved	< 0.00050	N/A	0.00050		2021-10-16
Barium, dissolved	< 0.0050	N/A	0.0050		2021-10-16
Beryllium, dissolved	< 0.00010	N/A	0.00010		2021-10-16
Bismuth, dissolved	< 0.00010	N/A	0.00010		2021-10-16
Boron, dissolved	< 0.0500	N/A	0.0500		2021-10-16
Cadmium, dissolved	< 0.000010	N/A	0.000010		2021-10-16
Calcium, dissolved	< 0.20	N/A		mg/L	2021-10-16
Chromium, dissolved	< 0.00050	N/A	0.00050		2021-10-16
Cobalt, dissolved	< 0.00010	N/A	0.00010		2021-10-16
Copper, dissolved	< 0.00040	N/A	0.00040	mg/L	2021-10-16
Iron, dissolved	< 0.010	N/A	0.010	mg/L	2021-10-16
Lead, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-16
Lithium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16
Magnesium, dissolved	< 0.010	N/A	0.010	mg/L	2021-10-16
Manganese, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-16
Mercury, dissolved	< 0.000010	N/A	0.000010	mg/L	2021-10-15
Molybdenum, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16
Nickel, dissolved	< 0.00040	N/A	0.00040	mg/L	2021-10-16
Phosphorus, dissolved	< 0.050	N/A	0.050	mg/L	2021-10-16
Potassium, dissolved	< 0.10	N/A	0.10	mg/L	2021-10-16
Selenium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-16
Silicon, dissolved	< 1.0	N/A	1.0	mg/L	2021-10-16
Silver, dissolved	< 0.000050	N/A	0.000050	mg/L	2021-10-16
Sodium, dissolved	< 0.10	N/A	0.10	mg/L	2021-10-16
Strontium, dissolved	< 0.0010	N/A	0.0010	mg/L	2021-10-16
Sulfur, dissolved	< 3.0	N/A	3.0	mg/L	2021-10-16
Tellurium, dissolved	< 0.00050	N/A	0.00050	mg/L	2021-10-16
Thallium, dissolved	< 0.000020	N/A	0.000020	mg/L	2021-10-16
Thorium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16
Tin, dissolved	< 0.00020	N/A	0.00020	mg/L	2021-10-16 Page 17 o

REPORTED TO Elk River Alliance PROJECT ERA-CBWM

WORK ORDER REPORTED

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
FLD001_20211005_1455 (21J1168-07)	Matrix: Water Sar	mpled: 2021-10-05	14:55, Contin	ued		
Dissolved Metals, Continued						
Titanium, dissolved	< 0.0050	N/A	0.0050	ma/L	2021-10-16	
Tungsten, dissolved	< 0.0010	N/A	0.0010		2021-10-16	
Uranium, dissolved	< 0.000020	N/A	0.000020		2021-10-16	
Vanadium, dissolved	< 0.0010	N/A	0.0010		2021-10-16	
Zinc, dissolved	< 0.0040	N/A	0.0040		2021-10-16	
Zirconium, dissolved	< 0.00010	N/A	0.00010	mg/L	2021-10-16	
General Parameters						
Alkalinity, Total (as CaCO3)	< 1.0	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Carbonate (as CaCO3)	< 1.0	N/A	1.0	mg/L	2021-10-12	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	N/A	1.0	mg/L	2021-10-12	
Carbon, Total Organic	< 0.50	N/A	0.50	mg/L	2021-10-12	
Carbon, Dissolved Organic	< 0.50	N/A	0.50	mg/L	2021-10-12	
Nitrogen, Total Kjeldahl	< 0.050	N/A	0.050	mg/L	2021-10-15	
Phosphorus, Total (as P)	< 0.0050	N/A	0.0050	mg/L	2021-10-18	
Solids, Total Suspended	< 2.0	N/A	2.0	mg/L	2021-10-14	HT1
Total Metals				-		
Aluminum, total	0.0052	OG < 0.1	0.0050	mg/L	2021-10-17	
Antimony, total	< 0.00020	MAC = 0.006	0.00020		2021-10-17	
Arsenic, total	< 0.00050	MAC = 0.01	0.00050		2021-10-17	
Barium, total	< 0.0050	MAC = 2	0.0050		2021-10-17	
Beryllium, total	< 0.00010	N/A	0.00010		2021-10-17	
Bismuth, total	< 0.00010	N/A	0.00010		2021-10-17	
Boron, total	< 0.0500	MAC = 5	0.0500		2021-10-17	
Cadmium, total	< 0.000010	MAC = 0.005	0.000010		2021-10-17	
Calcium, total	0.38	None Required	0.20		2021-10-17	
Chromium, total	< 0.00050	MAC = 0.05	0.00050		2021-10-17	
Cobalt, total	< 0.00010	N/A	0.00010		2021-10-17	
Copper, total	< 0.00040	MAC = 2	0.00040		2021-10-17	
Iron, total	< 0.010	AO ≤ 0.3	0.010		2021-10-17	
Lead, total	< 0.00020	MAC = 0.005	0.00020		2021-10-17	
Lithium, total	0.00021	N/A	0.00010		2021-10-17	
Magnesium, total	< 0.010	None Required	0.010		2021-10-17	
Manganese, total	< 0.00020	MAC = 0.12	0.00020		2021-10-17	
Mercury, total	< 0.000010	MAC = 0.001	0.000010		2021-10-15	
Molybdenum, total	< 0.00010	N/A	0.00010		2021-10-17	
Nickel, total	< 0.00040	N/A	0.00040		2021-10-17	
Phosphorus, total	< 0.050	N/A	0.050		2021-10-17	
Potassium, total	< 0.10	N/A		mg/L	2021-10-17	
Selenium, total	< 0.00050	MAC = 0.05	0.00050		2021-10-17	
Silicon, total	< 1.0	N/A		mg/L	2021-10-17	
					P	age 18 of 3

REPORTED TO PROJECT

Elk River Alliance ERA-CBWM WORK ORDER REPORTED

0.0040 mg/L

0.00010 mg/L

21J1168 2021-11-05 16:36

2021-10-17

2021-10-17

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifier
FLD001_20211005_1455 (21J1	168-07) Matrix: Water Sa	mpled: 2021-10-05	14:55, Continu	ued		
Total Metals, Continued						
Silver, total	< 0.000050	None Required	0.000050	mg/L	2021-10-17	
Sodium, total	< 0.10	AO ≤ 200	0.10	mg/L	2021-10-17	
Strontium, total	< 0.0010	7	0.0010	mg/L	2021-10-17	
Sulfur, total	< 3.0	N/A	3.0	mg/L	2021-10-17	
Tellurium, total	< 0.00050	N/A	0.00050	mg/L	2021-10-17	
Thallium, total	< 0.000020	N/A	0.000020	mg/L	2021-10-17	
Thorium, total	< 0.00010	N/A	0.00010	mg/L	2021-10-17	
Tin, total	< 0.00020	N/A	0.00020	mg/L	2021-10-17	
Titanium, total	< 0.0050	N/A	0.0050	mg/L	2021-10-17	
Tungsten, total	< 0.0010	N/A	0.0010	mg/L	2021-10-17	
Uranium, total	< 0.000020	MAC = 0.02	0.000020	mg/L	2021-10-17	
Vanadium, total	< 0.0010	N/A	0.0010	mg/L	2021-10-17	

AO ≤ 5

N/A

Sample Qualifiers:

Zinc, total

Zirconium, total

HT1 The sample was prepared and/or analyzed past the recommended holding time.

0.0417

0.00016

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Elk River Alliance PROJECT ERA-CBWM

WORK ORDER
REPORTED

21J1168 2021-11-05 16:36

Analysis Description	Method Ref.	Technique A	ccredited	Location
Alkalinity in Water	SM 2320 B* (2017)	Titration with H2SO4	✓	Kelowna
Anions in Water	SM 4110 B (2017)	Ion Chromatography	✓	Kelowna
Carbon, Dissolved Organic in Water	SM 5310 B (2017)	Combustion, Infrared CO2 Detection	✓	Kelowna
Carbon, Total Organic in Water	SM 5310 B (2017)	Combustion, Infrared CO2 Detection	✓	Kelowna
Dissolved Metals in Water	EPA 200.8 / EPA 6020B	0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	✓	Richmond
EPH in Water	EPA 3511* / BCMOE EPHw	Hexane MicroExtraction (Base/Neutral) / Gas Chromatography (GC-FID)	✓	Richmond
Hardness in Water	SM 2340 B (2017)	Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]	✓	N/A
Mercury, dissolved in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	✓	Richmond
Mercury, total in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	✓	Richmond
Nitrogen, Total Kjeldahl in Water	SM 4500-Norg D* (2017)	Block Digestion and Flow Injection Analysis	✓	Kelowna
Phosphorus, Total in Water	SM 4500-P B.5* (2011) / SM 4500-P F (2017)	Persulfate Digestion / Automated Colorimetry (Ascorbic Ac	id) ✓	Kelowna
Solids, Total Suspended in Water	SM 2540 D* (2017)	Gravimetry (Dried at 103-105C)	✓	Kelowna
Total Metals in Water	EPA 200.2 / EPA 6020B	HNO3+HCl Hot Block Digestion / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	✓	Richmond

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL Reporting Limit (default)

Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

AO Aesthetic Objective

MAC Maximum Acceptable Concentration (health based)

mg/L Milligrams per litre

OG Operational Guideline (treated water)

μg/L Micrograms per litre

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

Guidelines Referenced in this Report:

Guidelines for Canadian Drinking Water Quality (Health Canada, June 2019)

Note: In some cases, the values displayed on the report represent the lowest guideline and are to be verified by the end user

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Elk River Alliance
PROJECT ERA-CBWM

WORK ORDER REPORTED

21J1168 (2021-11-05 16:36)

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued or once samples expire, whichever comes first. Longer hold is possible if agreed to in writing.

Results in **Bold** indicate values that are above CARO's method reporting limits. Any results that are above regulatory limits are highlighted **red**. Please note that results will only be highlighted red if the regulatory limits are included on the CARO report. Any Bold and/or highlighted results do <u>not</u> take into account method uncertainty. If you would like method uncertainty or regulatory limits to be included on your report, please contact your Account Manager:teamcaro@caro.ca

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline(s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.

REPORTED TO PROJECT

Elk River Alliance ERA-CBWM WORK ORDER REPORTED

21J1168 2021-11-05 16:36

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- Duplicate (Dup): An additional or second portion of a randomly selected sample in the analytical run carried through the entire
 analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed.
 Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
Anions, Batch B1J1217									
Blank (B1J1217-BLK1)			Prepared	l: 2021-10-	14, Analyze	d: 2021-	10-14		
Chloride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Phosphate (as P)	< 0.0050	0.0050 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B1J1217-BLK2)			Prepared	l: 2021-10-	14, Analyze	d: 2021-	10-14		
Chloride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Phosphate (as P)	< 0.0050	0.0050 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B1J1217-BLK3)			Prepared	l: 2021-10-	14, Analyze	d: 2021-	10-14		
Chloride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Phosphate (as P)	< 0.0050	0.0050 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B1J1217-BLK4)			Prepared	l: 2021-10-	14, Analyze	d: 2021-	10-14		
Chloride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Phosphate (as P)	< 0.0050	0.0050 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B1J1217-BLK5)			Prepared	l: 2021-10-	14, Analyze	d: 2021-	10-14		
Chloride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Nitrite (as N)	< 0.010	0.010 mg/L							
Phosphate (as P)	< 0.0050	0.0050 mg/L							
Sulfate	< 1.0	1.0 mg/L							
LCS (B1J1217-BS1)			Prepared	l: 2021-10-	14, Analyze	d: 2021-	10-14		
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Nitrate (as N)	4.05	0.010 mg/L	4.00		101	90-110			ao 22 of

Blank (B1J1712-BLK1)

Surrogate: 2-Methylnonane (EPH/F2-4)

EPHw10-19

EPHw19-32

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO Elk River Alliance PROJECT ERA-CBWM					WORK REPOR	ORDER		168 -11-05	16:36
ROJECT ENA-ODWW					KLFOK		2021		10.50
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualific
nions, Batch B1J1217, Continued									
LCS (B1J1217-BS1), Continued			Prepared	l: 2021-10-1	4, Analyze	d: 2021-1	10-14		
Nitrite (as N)	2.01	0.010 mg/L	2.00		100	85-115			
Phosphate (as P)	0.977	0.0050 mg/L	1.00		98	80-120			
Sulfate	16.1	1.0 mg/L	16.0		101	90-110			
_CS (B1J1217-BS2)			Prepared	l: 2021-10-1	4, Analyze	d: 2021-	10-14		
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Nitrate (as N)	4.04	0.010 mg/L	4.00		101	90-110			
Nitrite (as N)	2.00	0.010 mg/L	2.00		100	85-115			
Phosphate (as P)	0.980	0.0050 mg/L	1.00		98	80-120			
Sulfate	16.3	1.0 mg/L	16.0		102	90-110			
LCS (B1J1217-BS3)			Prepared	l: 2021-10-1	4, Analyze	d: 2021-1	10-14		
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Nitrate (as N)	4.09	0.010 mg/L	4.00		102	90-110			
Nitrite (as N)	2.00	0.010 mg/L	2.00		100	85-115			
Phosphate (as P)	0.973	0.0050 mg/L	1.00		97	80-120			
Sulfate	16.1	1.0 mg/L	16.0		101	90-110			
LCS (B1J1217-BS4)			Prepared	l: 2021-10-1	4, Analyze	d: 2021-	10-14		
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Nitrate (as N)	4.10	0.010 mg/L	4.00		103	90-110			
Nitrite (as N)	2.01	0.010 mg/L	2.00		100	85-115			
Phosphate (as P)	1.07	0.0050 mg/L	1.00		107	80-120			
Sulfate	16.0	1.0 mg/L	16.0		100	90-110			
LCS (B1J1217-BS5)			Prepared	: 2021-10-1	4, Analyze	d: 2021-	10-14		
Chloride	16.0	0.10 mg/L	16.0		100	90-110			
Nitrate (as N)	4.10	0.010 mg/L	4.00		102	90-110			
Nitrite (as N)	2.00	0.010 mg/L	2.00		100	85-115			
Phosphate (as P)	0.984	0.0050 mg/L	1.00		98	80-120			
Sulfate	16.1	1.0 mg/L	16.0		101	90-110			
BCMOE Aggregate Hydrocarbons, Bato	ch B1J1594								
Blank (B1J1594-BLK1)			Prepared	l: 2021-10-1	5, Analyze	d: 2021-1	10-16		
EPHw10-19	< 250	250 μg/L							
EPHw19-32	< 250	250 μg/L							
Surrogate: 2-Methylnonane (EPH/F2-4)	1510	μg/L	1620		93	60-140			
LCS (B1J1594-BS2)				l: 2021-10-1	-		10-16		
EPHw10-19	16400	250 μg/L	15400		106	70-130			
EPHw19-32	25200	250 μg/L	22100		114	70-130			
Surrogate: 2-Methylnonane (EPH/F2-4)	1250	μg/L	1620		77	60-140			
LCS Dup (B1J1594-BSD2)			Prepared	: 2021-10-1	5, Analyze	d: 2021-	10-16		
EPHw10-19	16300	250 μg/L	15400		105	70-130	< 1	20	
	24700	250 µg/L	22100		112	70-130	2	20	
EPHw19-32 Surrogate: 2-Methylnonane (EPH/F2-4)	1250	μg/L	1620		77	60-140			

1620

250 μg/L

250 µg/L

μg/L

< 250

< 250

1340

Prepared: 2021-10-16, Analyzed: 2021-10-17

83

60-140

Analyte

Uranium, dissolved

Zinc, dissolved

Vanadium, dissolved

Zirconium, dissolved

Aluminum, dissolved

Antimony, dissolved Arsenic, dissolved

Barium, dissolved
Beryllium, dissolved

Blank (B1J1470-BLK2)

APPENDIX 2: QUALITY CONTROL RESULTS

Result

< 0.000020

< 0.0010

< 0.0040

< 0.0050 < 0.00020

< 0.00050

< 0.00010

< 0.0050

< 0.00010

REPORTED TO	Elk River Alliance	WORK ORDER	21J1168 🔪
PROJECT	ERA-CBWM	REPORTED	2021-11-05 16:36

RL Units

Spike

Level

Source

Result

REC

Limit

% REC

% RPD RPD

Limit

Qualifier

LCS (B1J1712-BS2)			Prepared: 2021	<u>-10-16,</u> Analyze	ed: 2021-10)-17	
EPHw10-19	16400	250 µg/L	15400	106	70-130		
EPHw19-32	24600	250 μg/L	22100	111	70-130		
Surrogate: 2-Methylnonane (EPH/F2-4)	1470	μg/L	1620	91	60-140		
LCS Dup (B1J1712-BSD2)			Prepared: 2021	-10-16, Analyze	ed: 2021-10)-17	
EPHw10-19	16300	250 µg/L	15400	106	70-130	< 1	20
EPHw19-32	24700	250 μg/L	22100	112	70-130	< 1	20
Surrogate: 2-Methylnonane (EPH/F2-4)	1510	μg/L	1620	93	60-140		
Dissolved Metals, Batch B1J1470							
Blank (B1J1470-BLK1)			Prepared: 2021	-10-16, Analyze	ed: 2021-10	0-16	
Aluminum, dissolved	< 0.0050	0.0050 mg/L					
Antimony, dissolved	< 0.00020	0.00020 mg/L					
Arsenic, dissolved	< 0.00050	0.00050 mg/L					
Barium, dissolved	< 0.0050	0.0050 mg/L					
Beryllium, dissolved	< 0.00010	0.00010 mg/L					
Bismuth, dissolved	< 0.00010	0.00010 mg/L					
Boron, dissolved	< 0.0500	0.0500 mg/L					
Cadmium, dissolved	< 0.000010	0.000010 mg/L					
Calcium, dissolved, dissolved	< 0.20	0.20 mg/L					
Chromium, dissolved	< 0.00050	0.00050 mg/L					
Cobalt, dissolved	< 0.00010	0.00010 mg/L					
Copper, dissolved	< 0.00040	0.00040 mg/L					
Iron, dissolved	< 0.010	0.010 mg/L					
Lead, dissolved	< 0.00020	0.00020 mg/L					
Lithium, dissolved	< 0.00010	0.00010 mg/L					
Magnesium, dissolved, dissolved	< 0.010	0.010 mg/L					
Manganese, dissolved	< 0.00020	0.00020 mg/L					
Molybdenum, dissolved	< 0.00010	0.00010 mg/L					
Nickel, dissolved	< 0.00040	0.00040 mg/L					
Phosphorus, dissolved	< 0.050	0.050 mg/L					
Potassium, dissolved	< 0.10	0.10 mg/L					
Selenium, dissolved	< 0.00050	0.00050 mg/L					
Silicon, dissolved	< 1.0	1.0 mg/L					
Silver, dissolved	< 0.000050	0.000050 mg/L					
Sodium, dissolved	< 0.10	0.10 mg/L					
Strontium, dissolved	< 0.0010	0.0010 mg/L					
Sulfur, dissolved	< 3.0	3.0 mg/L					
Tellurium, dissolved	< 0.00050	0.00050 mg/L					
Thallium, dissolved	< 0.000020	0.000020 mg/L					
Thorium, dissolved	< 0.00010	0.00010 mg/L					
Tin, dissolved	< 0.00020	0.00020 mg/L					
Titanium, dissolved	< 0.0050	0.0050 mg/L					
Tungsten, dissolved	< 0.0010	0.0010 mg/L					
I benefit on die eelt te d	4 0 000000	0.000000 //					

Prepared: 2021-10-16, Analyzed: 2021-10-16

0.000020 mg/L

0.0010 mg/L 0.0040 mg/L

0.00010 mg/L

0.0050 mg/L

0.00020 mg/L

0.00050 mg/L

0.0050 mg/L

0.00010 mg/L

REPORTED TO	Elk River Alliance	WORK ORDER	21J1168 \
PROJECT	ERA-CBWM	REPORTED	2021-11-05 16:36

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals, Batch B1J1470, Cont	tinued								
Blank (B1J1470-BLK2), Continued			Prepared	: 2021-10-16	6, Analyze	d: 2021-1	10-16		
Bismuth, dissolved	< 0.00010	0.00010 mg/L							
Boron, dissolved	< 0.0500	0.0500 mg/L							
Cadmium, dissolved	< 0.000010	0.000010 mg/L							
Calcium, dissolved, dissolved	< 0.20	0.20 mg/L							
Chromium, dissolved	< 0.00050	0.00050 mg/L							
Cobalt, dissolved	< 0.00010	0.00010 mg/L							
Copper, dissolved	< 0.00040	0.00040 mg/L							
Iron, dissolved	< 0.010	0.010 mg/L							
Lead, dissolved	< 0.00020	0.00020 mg/L							
Lithium, dissolved	< 0.00010	0.00010 mg/L							
Magnesium, dissolved, dissolved	< 0.010	0.010 mg/L							
Manganese, dissolved	< 0.00020	0.00020 mg/L							
Molybdenum, dissolved	< 0.00010	0.00010 mg/L							
Nickel, dissolved Phosphorus, dissolved	< 0.00040	0.00040 mg/L							
Potassium, dissolved	< 0.050 < 0.10	0.050 mg/L 0.10 mg/L							
Selenium, dissolved	< 0.00050	0.00050 mg/L							
Silicon, dissolved	< 1.0	1.0 mg/L							
Silver, dissolved	< 0.000050	0.000050 mg/L							
Sodium, dissolved	< 0.10	0.10 mg/L							
Strontium, dissolved	< 0.0010	0.0010 mg/L							
Sulfur, dissolved	< 3.0	3.0 mg/L							
Tellurium, dissolved	< 0.00050	0.00050 mg/L							
Thallium, dissolved	< 0.000020	0.000020 mg/L							
Thorium, dissolved	< 0.00010	0.00010 mg/L							
Tin, dissolved	< 0.00020	0.00020 mg/L							
Titanium, dissolved	< 0.0050	0.0050 mg/L							
Tungsten, dissolved	< 0.0010	0.0010 mg/L							
Uranium, dissolved	< 0.000020	0.000020 mg/L							
Vanadium, dissolved	< 0.0010	0.0010 mg/L							
Zinc, dissolved	< 0.0040	0.0040 mg/L							
Zirconium, dissolved	< 0.00010	0.00010 mg/L							
LCS (B1J1470-BS1)			Prepared	: 2021-10-16	6, Analyze	d: 2021-	10-16		
Aluminum, dissolved	0.0232	0.0050 mg/L	0.0200		116	80-120			
Antimony, dissolved	0.0188	0.00020 mg/L	0.0200		94	80-120			
Arsenic, dissolved	0.0182	0.00050 mg/L	0.0200		91	80-120			
Barium, dissolved	0.0184	0.0050 mg/L	0.0200		92	80-120			
Beryllium, dissolved	0.0190	0.00010 mg/L	0.0200		95 97	80-120 80-120			
Bismuth, dissolved Boron, dissolved	0.0193 < 0.0500	0.00010 mg/L 0.0500 mg/L	0.0200 0.0200		106	80-120			
Cadmium, dissolved	0.0185	0.000010 mg/L	0.0200		93	80-120			
Calcium, dissolved Calcium, dissolved	2.11	0.20 mg/L	2.00		106	80-120			
Chromium, dissolved	0.0188	0.00050 mg/L	0.0200		94	80-120			
Cobalt, dissolved	0.0188	0.00010 mg/L	0.0200		94	80-120			
Copper, dissolved	0.0186	0.00040 mg/L	0.0200		93	80-120			
Iron, dissolved	1.83	0.010 mg/L	2.00		92	80-120			
Lead, dissolved	0.0187	0.00020 mg/L	0.0200		93	80-120			
Lithium, dissolved	0.0190	0.00010 mg/L	0.0200		95	80-120			
Magnesium, dissolved, dissolved	2.01	0.010 mg/L	2.00		100	80-120			
Manganese, dissolved	0.0189	0.00020 mg/L	0.0200		94	80-120			
Molybdenum, dissolved	0.0182	0.00010 mg/L	0.0200		91	80-120			
Nickel, dissolved	0.0190	0.00040 mg/L	0.0200		95	80-120			
Phosphorus, dissolved	1.89	0.050 mg/L	2.00		94	80-120			
Potassium, dissolved	1.90	0.10 mg/L	2.00		95	80-120			
Selenium, dissolved	0.0203	0.00050 mg/L	0.0200		101	80-120			

REPORTED TO	Elk River Alliance	WORK ORDER	21J1168 \
PROJECT	ERA-CBWM	REPORTED	2021-11-05 16:36

Analyte	Result	RL Units	Spike Level	Source % REC Result	REC o	% RPD RPD Limit	Qualifier
Dissolved Metals, Batch B1J1470, Contin	ued						
LCS (B1J1470-BS1), Continued			Prepared	: 2021-10-16, Analyze	d: 2021-10	-16	
Silicon, dissolved	1.8	1.0 mg/L	2.00	91	80-120		
Silver, dissolved	0.0183	0.000050 mg/L	0.0200	91	80-120		
Sodium, dissolved	1.95	0.10 mg/L	2.00	97	80-120		
Strontium, dissolved	0.0190	0.0010 mg/L	0.0200	95	80-120		
Sulfur, dissolved	4.7	3.0 mg/L	5.00	94	80-120		
Tellurium, dissolved	0.0190	0.00050 mg/L	0.0200	95	80-120		
Thallium, dissolved	0.0193	0.000020 mg/L	0.0200	97	80-120		
Thorium, dissolved	0.0187	0.00010 mg/L	0.0200	93	80-120		
Tin, dissolved	0.0196	0.00020 mg/L	0.0200	98	80-120		
Titanium, dissolved	0.0192	0.0050 mg/L	0.0200	96	80-120		
Tungsten, dissolved Uranium, dissolved	0.0185 0.0187	0.0010 mg/L 0.000020 mg/L	0.0200	92 93	80-120 80-120		
Vanadium, dissolved	0.0107	0.000020 mg/L	0.0200	95	80-120		
Zinc, dissolved	0.0204	0.0040 mg/L	0.0200	102	80-120		
Zirconium, dissolved	0.0191	0.00010 mg/L	0.0200	95	80-120		
LCS (B1J1470-BS2)	0.0.0.	0.000 to 111g/2		: 2021-10-16, Analyze		-16	
Aluminum, dissolved	0.0227	0.0050 mg/L	0.0200	113	80-120		
Antimony, dissolved	0.0192	0.00020 mg/L	0.0200	96	80-120		
Arsenic, dissolved	0.0187	0.00050 mg/L	0.0200	93	80-120		
Barium, dissolved	0.0191	0.0050 mg/L	0.0200	96	80-120		
Beryllium, dissolved	0.0196	0.00010 mg/L	0.0200	98	80-120		
Bismuth, dissolved	0.0199	0.00010 mg/L	0.0200	100	80-120		
Boron, dissolved	< 0.0500	0.0500 mg/L	0.0200	107	80-120		
Cadmium, dissolved	0.0185	0.000010 mg/L	0.0200	92	80-120		
Calcium, dissolved, dissolved	2.17	0.20 mg/L	2.00	108	80-120		
Chromium, dissolved	0.0188	0.00050 mg/L	0.0200	94	80-120		
Cobalt, dissolved	0.0188	0.00010 mg/L	0.0200	94	80-120		
Copper, dissolved	0.0188	0.00040 mg/L	0.0200	94	80-120		
Iron, dissolved	1.85	0.010 mg/L	2.00	93	80-120		
Lead, dissolved	0.0191	0.00020 mg/L	0.0200	96	80-120		
Lithium, dissolved	0.0196	0.00010 mg/L	0.0200	98	80-120		
Magnesium, dissolved, dissolved	2.03	0.010 mg/L	2.00	101	80-120		
Manganese, dissolved	0.0193	0.00020 mg/L	0.0200	97	80-120		
Molybdenum, dissolved	0.0179	0.00010 mg/L	0.0200	89	80-120		
Nickel, dissolved	0.0194	0.00040 mg/L	0.0200	97	80-120		
Phosphorus, dissolved	1.90	0.050 mg/L	2.00	95	80-120		
Potassium, dissolved	1.91	0.10 mg/L 0.00050 mg/L	2.00	96 98	80-120 80-120		
Selenium, dissolved Silicon, dissolved	0.0197		0.0200 2.00		80-120		
Silver, dissolved	0.0185	1.0 mg/L 0.000050 mg/L	0.0200	92	80-120		
Sodium, dissolved	1.97	0.000030 Hig/L 0.10 mg/L	2.00	99	80-120		
Strontium, dissolved	0.0266	0.0010 mg/L	0.0200	133	80-120		SPK1
Sulfur, dissolved	4.0	3.0 mg/L	5.00	80	80-120		
Tellurium, dissolved	0.0184	0.00050 mg/L	0.0200	92	80-120		
Thallium, dissolved	0.0197	0.000020 mg/L	0.0200	98	80-120		
Thorium, dissolved	0.0192	0.00010 mg/L	0.0200	96	80-120		
Tin, dissolved	0.0193	0.00020 mg/L	0.0200	96	80-120		
Titanium, dissolved	0.0193	0.0050 mg/L	0.0200	97	80-120		
Tungsten, dissolved	0.0182	0.0010 mg/L	0.0200	91	80-120		
Uranium, dissolved	0.0191	0.000020 mg/L	0.0200	96	80-120		
Vanadium, dissolved	0.0188	0.0010 mg/L	0.0200	94	80-120		
Zinc, dissolved	0.0218	0.0040 mg/L	0.0200	109	80-120		
Zirconium, dissolved	0.0191	0.00010 mg/L	0.0200	96	80-120		
Reference (B1J1470-SRM1)			Prepared	: 2021-10-16, Analyze		-16	
Aluminum, dissolved	0.247	0.0050 mg/L	0.235	105	70-130	Dr	age 26 of 34

REPORTED TOElk River AllianceWORK ORDER21J1168PROJECTERA-CBWMREPORTED2021-11-05 16:36

Analyte	Result	RL Units	Spike Level	Source % REC Result	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals, Batch B1J1470, Continue	ed							
Reference (B1J1470-SRM1), Continued			Prepared	: 2021-10-16, Analyze	ed: 2021-	10-16		
Antimony, dissolved	0.0434	0.00020 mg/L	0.0431	101	70-130			
Arsenic, dissolved	0.422	0.00050 mg/L	0.423	100	70-130			
Barium, dissolved	2.97	0.0050 mg/L	3.30	90	70-130			
Beryllium, dissolved	0.205	0.00010 mg/L	0.209	98	70-130			
Boron, dissolved	1.62	0.0500 mg/L	1.65	98	70-130			
Cadmium, dissolved	0.208	0.000010 mg/L	0.221	94	70-130			
Calcium, dissolved, dissolved	7.96	0.20 mg/L	7.72	103	70-130			
Chromium, dissolved	0.413	0.00050 mg/L	0.434	95	70-130			
Cobalt, dissolved	0.120	0.00010 mg/L	0.124	97	70-130			
Copper, dissolved	0.774	0.00040 mg/L	0.815	95	70-130			
Iron, dissolved	1.24	0.010 mg/L	1.27	98	70-130			
Lead, dissolved	0.107	0.00020 mg/L	0.110	97	70-130			
Lithium, dissolved	0.0976	0.00010 mg/L	0.100	98	70-130			
Magnesium, dissolved, dissolved	6.93	0.010 mg/L	6.59	105	70-130			
Manganese, dissolved	0.333	0.00020 mg/L	0.342	97	70-130			
Molybdenum, dissolved	0.388	0.00010 mg/L	0.404	96	70-130			
Nickel, dissolved	0.817	0.00040 mg/L	0.835	98	70-130			
Phosphorus, dissolved	0.511	0.050 mg/L	0.499	102	70-130			
Potassium, dissolved	2.98	0.10 mg/L	2.88	103	70-130			
Selenium, dissolved	0.0328	0.00050 mg/L	0.0324	101	70-130			
Sodium, dissolved	18.9	0.10 mg/L	18.0	105	70-130			
Strontium, dissolved	0.877	0.0010 mg/L	0.935	94	70-130			
Thallium, dissolved	0.0391	0.000020 mg/L	0.0385	102	70-130			
Uranium, dissolved	0.248	0.000020 mg/L	0.258	96	70-130			
Vanadium, dissolved	0.817	0.0010 mg/L	0.873	94	70-130			
Zinc, dissolved	0.880	0.0040 mg/L	0.848	104	70-130			
Reference (B1J1470-SRM2)			Prepared	: 2021-10-16, Analyze	ed: 2021-	10-16		
Aluminum, dissolved	0.235	0.0050 mg/L	0.235	100	70-130			
Antimony, dissolved	0.0441	0.00020 mg/L	0.0431	102	70-130			
Arsenic, dissolved	0.433	0.00050 mg/L	0.423	102	70-130			
Barium, dissolved	3.03	0.0050 mg/L	3.30	92	70-130			
Beryllium, dissolved	0.207	0.00010 mg/L	0.209	99	70-130			
Boron, dissolved	1.69	0.0500 mg/L	1.65	102	70-130			
Cadmium, dissolved	0.213	0.000010 mg/L	0.221	96	70-130			
Calcium, dissolved, dissolved	7.94	0.20 mg/L	7.72	103	70-130			
Chromium, dissolved	0.421	0.00050 mg/L	0.434	97	70-130			
Cobalt, dissolved	0.123	0.00010 mg/L	0.124	99	70-130			
Copper, dissolved	0.791	0.00040 mg/L	0.815	97	70-130			
Iron, dissolved	1.24	0.010 mg/L	1.27	98	70-130			
Lead, dissolved	0.108	0.00020 mg/L	0.110	98	70-130			
Lithium, dissolved	0.0992	0.00010 mg/L	0.100	99	70-130			
Magnesium, dissolved, dissolved	6.77	0.010 mg/L	6.59	103	70-130			
Manganese, dissolved	0.330	0.00020 mg/L	0.342	97	70-130			
Molybdenum, dissolved	0.396	0.00010 mg/L	0.404	98	70-130			
Nickel, dissolved	0.833	0.00040 mg/L	0.835	100	70-130			
Phosphorus, dissolved	0.470	0.050 mg/L	0.499	94	70-130			
Potassium, dissolved	2.90	0.10 mg/L	2.88	101	70-130			
Selenium, dissolved	0.0330	0.00050 mg/L	0.0324	102	70-130			
Sodium, dissolved	18.5	0.10 mg/L	18.0	103	70-130			
Strontium, dissolved	0.867	0.0010 mg/L	0.935	93	70-130			
Thallium, dissolved	0.0395	0.000020 mg/L	0.0385	103	70-130 70-130			
Uranium, dissolved	0.249 0.835	0.000020 mg/L 0.0010 mg/L	0.258 0.873	96	70-130			
Vanadium, dissolved				96				
Zinc, dissolved	0.905	0.0040 mg/L	0.848	107	70-130			

REPORTED TO Elk River Alliance					WORK	ORDER	21J1	168	Ç.
PROJECT ERA-CBWM					REPOR	TED	2021	-11-05	16:36
			Spike	Source	a, 222	REC	0/	RPD	
Analyte	Result	RL Units	Level	Result	% REC	Limit	% RPD	Limit	Qualifier
Dissolved Metals, Batch B1J1497									
Blank (B1J1497-BLK1)			Prepared	: 2021-10-1	4. Analyze	d: 2021-1	10-15		
Mercury, dissolved	< 0.000010	0.000010 mg/L			., /,				
			D	. 2024 40 4	4 Analysis	٠, ٥٥٥٨ ،	10.45		
Blank (B1J1497-BLK2)	- 0.000040	0.000040//	Prepared	: 2021-10-1	4, Analyze	a: 2021-	10-15		
Mercury, dissolved	< 0.000010	0.000010 mg/L							
Blank (B1J1497-BLK3)			Prepared	: 2021-10-1	4, Analyze	d: 2021-	10-15		
Mercury, dissolved	< 0.000010	0.000010 mg/L							
Blank (B1J1497-BLK4)			Prepared	: 2021-10-1	4, Analyze	d: 2021-	10-15		
Mercury, dissolved	< 0.000010	0.000010 mg/L							
Reference (B1J1497-SRM1)			Prepared	: 2021-10-1	4, Analyze	d: 2021-	10-15		
Mercury, dissolved	0.00542	0.000010 mg/L	0.00581		93	70-130			
Reference (B1J1497-SRM2)		<u> </u>		: 2021-10-1	4 Analyzo		In ₋ 15		
Mercury, dissolved	0.00555	0.000010 mg/L	0.00581	. 2021-10-1	4, Analyze 95	70-130	10-13		
	0.00333	0.000010 Hig/L							
Reference (B1J1497-SRM3)	0.00500	0.000010 #	-	: 2021-10-1			10-15		
Mercury, dissolved	0.00562	0.000010 mg/L	0.00581		97	70-130			
Reference (B1J1497-SRM4)			Prepared	: 2021-10-1	4, Analyze	d: 2021-1	10-15		
Mercury, dissolved	0.00573	0.000010 mg/L	0.00581		99	70-130			
General Parameters, Batch B1J1011									
Blank (B1J1011-BLK1)			Prepared	: 2021-10-1	2, Analyze	d: 2021-1	10-12		
Carbon, Total Organic	< 0.50	0.50 mg/L							
Carbon, Dissolved Organic	< 0.50	0.50 mg/L							
Blank (B1J1011-BLK2)			Prepared	: 2021-10-1	2, Analyze	d: 2021-	10-12		
Carbon, Total Organic	< 0.50	0.50 mg/L	-		-				
Carbon, Dissolved Organic	< 0.50	0.50 mg/L							
LCS (B1J1011-BS1)			Prepared	: 2021-10-1	2, Analyze	d: 2021-	10-12		
Carbon, Total Organic	9.60	0.50 mg/L	10.0		96	78-116			_
Carbon, Dissolved Organic	9.63	0.50 mg/L	10.0		96	78-116			
LCS (B1J1011-BS2)			Prepared	: 2021-10-1	2, Analyze	d: 2021-	10-12		
Carbon, Total Organic	9.60	0.50 mg/L	10.0		96	78-116			
Carbon, Dissolved Organic	9.84	0.50 mg/L	10.0		98	78-116			
General Parameters, Batch B1J1246									
Blank (B1J1246-BLK1)			Prepared	: 2021-10-1	2, Analyze	d: 2021-	10-12		
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3)	< 1.0 < 1.0	1.0 mg/L 1.0 mg/L							
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0 mg/L							
Blank (B1J1246-BLK2)			Prenared	: 2021-10-1	2 Analyze	d· 2021-	10-12		
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L	i iepaieu	. 202 I-10-1	L, Allalyze	u. 2021-	10-12		
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0 mg/L							
								Do	an 20 of 2

REPORTED TO Elk River Alliance					WORK	ORDER	21J1	168 🛝	Ý
PROJECT ERA-CBWM					REPOR	RTED	2021	I-11-05	16:36
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameters, Batch B1J1246, C	ontinued								
Plank (P4 14246 PI K2)			Dranarad	: 2021-10-1	12 Analyze	d- 2021-	10-12		
Blank (B1J1246-BLK3)	- 4.0	4.0	Fiepaieu	. 2021-10-	iz, Allalyze	u. 2021-	10-12		
Alkalinity, Total (as CaCO3) Alkalinity, Phenolphthalein (as CaCO3)	< 1.0 < 1.0	1.0 mg/L 1.0 mg/L							
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0 mg/L							
LCS (B1J1246-BS1)			Prepared	: 2021-10-1	12. Analyze	ed: 2021-	10-12		
Alkalinity, Total (as CaCO3)	105	1.0 mg/L	100		105	80-120			
				: 2021-10-1			10-12		
LCS (B1J1246-BS2) Alkalinity, Total (as CaCO3)	104	1.0 mg/L	100	. 2021-10-1	104	80-120	10-12		
,	104	1.0 Hig/L							
LCS (B1J1246-BS3)				: 2021-10-1			10-12		
Alkalinity, Total (as CaCO3)	105	1.0 mg/L	100		105	80-120			
General Parameters, Batch B1J1302									
Blank (B1J1302-BLK1)			Prepared	: 2021-10-1	13, Analyze	ed: 2021-	10-13		
Solids, Total Suspended	< 2.0	2.0 mg/L							
Blank (B1J1302-BLK2)			Prepared	: 2021-10-1	13, Analyze	ed: 2021-	10-13		
Solids, Total Suspended	< 2.0	2.0 mg/L							
LCS (B1J1302-BS1)			Prepared	: 2021-10-1	I3, Analyze	ed: 2021-	10-13		
Solids, Total Suspended	89.0	10.0 mg/L	100		89	85-115			
LCS (B1J1302-BS2)			Prepared	: 2021-10-1	13 Analyze	ed: 2021-	10-13		
Solids, Total Suspended	100	10.0 mg/L	100		100	85-115			
General Parameters, Batch B1J1380									
Blank (B1J1380-BLK1)			Prepared	: 2021-10-1	I3, Analyze	ed: 2021-	10-15		
Nitrogen, Total Kjeldahl	< 0.050	0.050 mg/L	•						
Blank (B1J1380-BLK2)			Prenared	: 2021-10-1	I3 Analyze	ed: 2021-	10-15		
Nitrogen, Total Kjeldahl	< 0.050	0.050 mg/L	1 Toparou	. 2021 10	10,71101920		10 10		
	0.000	0.000g, _	Dranarad	: 2021-10-1	12 Analyza	.d. 2021 /	10.15		
LCS (B1J1380-BS1) Nitrogen, Total Kjeldahl	0.987	0.050 mg/L	1.00	. 2021-10-1	99	85-115	10-15		
	0.967	0.030 Hig/L							
LCS (B1J1380-BS2)				: 2021-10-1			10-15		
Nitrogen, Total Kjeldahl	0.940	0.050 mg/L	1.00		94	85-115			
General Parameters, Batch B1J1421									
Blank (B1J1421-BLK1)			Prepared	: 2021-10-1	14, Analyze	ed: 2021-	10-14		
Solids, Total Suspended	< 2.0	2.0 mg/L							
Blank (B1J1421-BLK2)			Prepared	: 2021-10-1	I4, Analyze	ed: 2021-	10-14		
Solids, Total Suspended	< 2.0	2.0 mg/L	•						
LCS (B1J1421-BS1)			Prenared	: 2021-10-1	14 Analyze	ed: 2021-	10-14		
Solids, Total Suspended	92.0	10.0 mg/L	100	0_1 10-1	92	85-115			
·	02.0	. 5.0 mg/L		. 0004 40 4			10.44		
LCS (B1J1421-BS2)	444	40.0	•	: 2021-10-1			10-14		
Solids, Total Suspended	111	10.0 mg/L	100		111	85-115			00

REPORTED TO	Elk River Alliance	WORK ORDER	21J1168 📏 💮
PROJECT	ERA-CBWM	REPORTED	2021-11-05 16:36

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameters, Batch B1J1789									
Blank (B1J1789-BLK1)			Prepared	l: 2021-10-1	8, Analyze	d: 2021-	10-18		
Phosphorus, Total (as P)	< 0.0050	0.0050 mg/L	•		· ·				
			Droporod	. 2024 40 4	0 Analyza	d. 2024 <i>i</i>	10 10		
Blank (B1J1789-BLK2)	. 0 0050	0.0050	Fiepaieu	l: 2021-10-1	o, Allalyze	u. 2021-	10-16		
Phosphorus, Total (as P)	< 0.0050	0.0050 mg/L							
LCS (B1J1789-BS1)			Prepared	l: 2021-10-1	8, Analyze	d: 2021-	10-18		
Phosphorus, Total (as P)	0.111	0.0050 mg/L	0.100		111	85-115			
LCS (B1J1789-BS2)			Prepared	l: 2021-10-1	8 Analyze	d· 2021-	10-18		
Phosphorus, Total (as P)	0.112	0.0050 mg/L	0.100	2021 10 1	112	85-115	10 10		
Triosphorae, retail (as r)	0.112	0.0000 mg/L	0.100		2	00 110			
Total Metals, Batch B1J1467									
Blank (B1J1467-BLK1)			Prepared	l: 2021-10-1	4, Analyze	d: 2021-	10-17		
Aluminum, total	< 0.0050	0.0050 mg/L							
Antimony, total	< 0.00020	0.00020 mg/L							
Arsenic, total	< 0.00050	0.00050 mg/L							
Barium, total	< 0.0050	0.0050 mg/L							
Beryllium, total	< 0.00010	0.00010 mg/L							
Bismuth, total	< 0.00010	0.00010 mg/L							
Boron, total Cadmium, total	< 0.0500 < 0.000010	0.0500 mg/L 0.000010 mg/L							
Calcium, total	< 0.20	0.000010 Hig/L 0.20 mg/L							
Chromium, total	< 0.00050	0.00050 mg/L							
Cobalt, total	< 0.00010	0.00000 mg/L							
Copper, total	< 0.00040	0.00040 mg/L							
Iron, total	< 0.010	0.010 mg/L							
Lead, total	< 0.00020	0.00020 mg/L							
Lithium, total	< 0.00010	0.00010 mg/L							
Magnesium, total	< 0.010	0.010 mg/L							
Manganese, total	< 0.00020	0.00020 mg/L							
Molybdenum, total	< 0.00010	0.00010 mg/L							
Nickel, total	< 0.00040	0.00040 mg/L							
Phosphorus, total	< 0.050	0.050 mg/L							
Potassium, total	< 0.10	0.10 mg/L							
Selenium, total	< 0.00050	0.00050 mg/L							
Silicon, total	< 1.0	1.0 mg/L							
Silver, total	< 0.000050	0.000050 mg/L							
Sodium, total	< 0.10	0.10 mg/L							
Strontium, total	< 0.0010	0.0010 mg/L							
Sulfur, total	< 3.0	3.0 mg/L							
Tellurium, total	< 0.00050	0.00050 mg/L							
Thallium, total	< 0.000020	0.000020 mg/L							
Thorium, total	< 0.00010	0.00010 mg/L							
Tin, total Titanium, total	< 0.00020 < 0.0050	0.00020 mg/L 0.0050 mg/L							
Tungsten, total	< 0.0050	0.0050 mg/L 0.0010 mg/L							
Uranium, total	< 0.000020	0.000020 mg/L							
Vanadium, total	< 0.000020	0.000020 Hig/L 0.0010 mg/L							
Zinc, total	< 0.0010	0.0040 mg/L							
Zirconium, total	< 0.0040	0.0040 mg/L							
	2.00010	5.555.5 mg/L			4 Al	-l- 0004 -	10.47		
Blank (B1J1467-BLK2)			Prepared	l: 2021-10-1	4, Anaivze	:a: 2021-	10-17		
Blank (B1J1467-BLK2) Aluminum total	< 0.0050	0 0050 mg/l	Prepared	1: 2021-10-1	4, Anaiyze	:a: 2021-	10-17		
Blank (B1J1467-BLK2) Aluminum, total Antimony, total	< 0.0050 < 0.00020	0.0050 mg/L 0.00020 mg/L	Prepared	: 2021-10-1	4, Anaiyze	d: 2021-	10-17		

REPORTED TO	Elk River Alliance	WORK ORDER	21J1168 \
PROJECT	ERA-CBWM	REPORTED	2021-11-05 16:36

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Total Metals, Batch B1J1467, Continued									
Blank (B1J1467-BLK2), Continued			Prepared	l: 2021-10-1	4, Analyze	d: 2021-	10-17		
Barium, total	< 0.0050	0.0050 mg/L							
Beryllium, total	< 0.00010	0.00010 mg/L							
Bismuth, total	< 0.00010	0.00010 mg/L							
Boron, total	< 0.0500	0.0500 mg/L							
Cadmium, total	< 0.000010	0.000010 mg/L							
Calcium, total	< 0.20	0.20 mg/L							
Chromium, total	< 0.00050	0.00050 mg/L							
Cobalt, total	< 0.00010	0.00010 mg/L							
Copper, total	< 0.00040	0.00040 mg/L							
Iron, total	< 0.010	0.010 mg/L							
Lead, total	< 0.00020	0.00020 mg/L							
Lithium, total	< 0.00010	0.00010 mg/L							
Magnesium, total	< 0.010	0.010 mg/L							
Manganese, total	< 0.00020	0.00020 mg/L							
Molybdenum, total	< 0.00010	0.00010 mg/L							
Nickel, total Phosphorus, total	< 0.00040	0.00040 mg/L							
Potassium, total	< 0.050 < 0.10	0.050 mg/L							
Selenium, total	< 0.00050	0.10 mg/L 0.00050 mg/L							
Silicon, total	< 1.0	1.0 mg/L							
Silver, total	< 0.000050	0.000050 mg/L							
Sodium, total	< 0.10	0.10 mg/L							
Strontium, total	< 0.0010	0.0010 mg/L							
Sulfur, total	< 3.0	3.0 mg/L							
Tellurium, total	< 0.00050	0.00050 mg/L							
Thallium, total	< 0.000020	0.000020 mg/L							
Thorium, total	< 0.00010	0.00010 mg/L							
Tin, total	< 0.00020	0.00020 mg/L							
Titanium, total	< 0.0050	0.0050 mg/L							
Tungsten, total	< 0.0010	0.0010 mg/L							
Uranium, total	< 0.000020	0.000020 mg/L							
Vanadium, total	< 0.0010	0.0010 mg/L							
Zinc, total	< 0.0040	0.0040 mg/L							
Zirconium, total	< 0.00010	0.00010 mg/L							
LCS (B1J1467-BS1)			Prepared	l: 2021-10-1	4, Analyze	d: 2021-1	10-17		
Aluminum, total	0.0231	0.0050 mg/L	0.0200		116	80-120			
Antimony, total	0.0201	0.00020 mg/L	0.0200		100	80-120			
Arsenic, total	0.0204	0.00050 mg/L	0.0200		102	80-120			
Barium, total	0.0189	0.0050 mg/L	0.0200		94	80-120			
Beryllium, total	0.0187	0.00010 mg/L	0.0200		94	80-120			
Bismuth, total	0.0198	0.00010 mg/L	0.0200		99	80-120			
Boron, total	< 0.0500	0.0500 mg/L	0.0200		107	80-120			
Cadmium, total	0.0193	0.000010 mg/L	0.0200		97	80-120			
Calcium, total	2.07	0.20 mg/L	2.00		103	80-120			
Chromium, total	0.0201	0.00050 mg/L	0.0200		100	80-120			
Cobalt, total	0.0200	0.00010 mg/L	0.0200		100	80-120			
Copper, total	0.0199	0.00040 mg/L	0.0200		100	80-120			
Iron, total	2.03	0.010 mg/L	2.00		101	80-120			
Lead, total	0.0192	0.00020 mg/L	0.0200		96	80-120			
Lithium, total	0.0192	0.00010 mg/L	0.0200		96	80-120			
Magnesium, total	2.04	0.010 mg/L	2.00		102	80-120			
Manganese, total	0.0198	0.00020 mg/L	0.0200		99	80-120			
Molybdenum, total	0.0186	0.00010 mg/L	0.0200		93	80-120			
Nickel, total	0.0203	0.00040 mg/L	0.0200		102	80-120			
Phosphorus, total	2.06	0.050 mg/L	2.00		103	80-120			

REPORTED TO	Elk River Alliance	WORK ORDER	21J1168
PROJECT	ERA-CBWM	REPORTED	2021-11-05 16:36

Analyte	Result	RL Units	Spike Level	Source % REC	REC Limit	% RPD	RPD Limit	Qualifier
Total Metals, Batch B1J1467, Continued								
LCS (B1J1467-BS1), Continued			Prepared	: 2021-10-14, Analy	zed: 2021-	10-17		
Potassium, total	1.99	0.10 mg/L	2.00	100	80-120			
Selenium, total	0.0207	0.00050 mg/L	0.0200	103	80-120			
Silicon, total	1.8	1.0 mg/L	2.00	91	80-120			
Silver, total	0.0188	0.000050 mg/L	0.0200	94	80-120			
Sodium, total	2.03	0.10 mg/L	2.00	101	80-120			
Strontium, total	0.0192	0.0010 mg/L	0.0200	96	80-120			
Sulfur, total	5.0	3.0 mg/L	5.00	101	80-120			
Tellurium, total	0.0208	0.00050 mg/L	0.0200	104	80-120			
Thallium, total	0.0199	0.000020 mg/L	0.0200	100	80-120			
Thorium, total	0.0184	0.00010 mg/L	0.0200	92	80-120			
Tin, total	0.0207	0.00020 mg/L	0.0200	103	80-120			
Titanium, total	0.0227	0.0050 mg/L	0.0200	114	80-120			
Tungsten, total	0.0190	0.0010 mg/L	0.0200	95	80-120			
Uranium, total	0.0190	0.000020 mg/L	0.0200	95	80-120			
Vanadium, total	0.0236	0.0010 mg/L	0.0200	118	80-120			
Zinc, total	0.0222	0.0040 mg/L	0.0200	111	80-120			
Zirconium, total	0.0198	0.00010 mg/L	0.0200	99	80-120			
LCS (B1J1467-BS2)			Prepared	: 2021-10-18, Analy	zed: 2021-	10-18		
Aluminum, total	0.0230	0.0050 mg/L	0.0200	115	80-120			
Antimony, total	0.0185	0.00020 mg/L	0.0200	92	80-120			
Arsenic, total	0.0167	0.00050 mg/L	0.0200	83	80-120			
Barium, total	0.0180	0.0050 mg/L	0.0200	90	80-120			
Beryllium, total	0.0179	0.00010 mg/L	0.0200	89	80-120			
Bismuth, total	0.0180	0.00010 mg/L	0.0200	90	80-120			
Boron, total	< 0.0500	0.0500 mg/L	0.0200	86	80-120			
Cadmium, total	0.0167	0.000010 mg/L	0.0200	84	80-120			
Calcium, total	1.85	0.20 mg/L	2.00	93	80-120			
Chromium, total	0.0175	0.00050 mg/L	0.0200	87	80-120			
Cobalt, total	0.0169	0.00010 mg/L	0.0200	84	80-120			
Copper, total	0.0158	0.00040 mg/L	0.0200	79	80-120			
Iron, total	1.62	0.010 mg/L	2.00	81	80-120			
Lead, total	0.0189	0.00020 mg/L	0.0200	94	80-120			
Lithium, total	0.0173	0.00010 mg/L	0.0200	86	80-120			
Magnesium, total	1.83	0.010 mg/L	2.00	91	80-120			
Manganese, total	0.0170	0.00020 mg/L	0.0200	85	80-120			
Molybdenum, total	0.0177	0.00010 mg/L	0.0200	88	80-120			
Nickel, total	0.0171	0.00040 mg/L	0.0200	85	80-120			
Phosphorus, total	1.75	0.050 mg/L	2.00	88	80-120			
Potassium, total	1.79	0.10 mg/L	2.00	90	80-120			
Selenium, total	0.0178	0.00050 mg/L	0.0200	89	80-120			
Silicon, total	1.8	1.0 mg/L	2.00	88	80-120			
Silver, total	0.0163	0.000050 mg/L	0.0200	82	80-120			
Sodium, total	1.77	0.10 mg/L	2.00	89	80-120			
Strontium, total	0.0179	0.0010 mg/L	0.0200	90	80-120			
Sulfur, total	3.4	3.0 mg/L	5.00	68	80-120			
Tellurium, total	0.0189	0.00050 mg/L	0.0200	95	80-120			
Thallium, total	0.0172	0.000020 mg/L	0.0200	86	80-120			
Thorium, total	0.0177	0.00010 mg/L	0.0200	89	80-120			
Tin, total	0.0192	0.00020 mg/L	0.0200	96	80-120			
Titanium, total	0.0207	0.0050 mg/L	0.0200	103	80-120			
Tungsten, total	0.0197	0.0010 mg/L	0.0200	98	80-120			
Uranium, total	0.0179	0.000020 mg/L	0.0200	90	80-120			
Vanadium, total	0.0200	0.0010 mg/L	0.0200	100	80-120			
Zinc, total	0.0167	0.0040 mg/L	0.0200	83	80-120			
Zirconium, total	0.0189	0.00010 mg/L	0.0200	94	80-120			

REPORTED TO	Elk River Alliance	WORK ORDER	21J1168 \
PROJECT	ERA-CBWM	REPORTED	2021-11-05 16:36

Analyte	Result	RL Units	Spike Level	Source % REC Result	REC Limit	% RPD	RPD Limit	Qualifier
Total Metals, Batch B1J1467, Continued								
Reference (B1J1467-SRM1)			Prepared	: 2021-10-14, Analyze	d: 2021-	10-17		
Aluminum, total	0.317	0.0050 mg/L	0.299	106	70-130			
Antimony, total	0.0500	0.00020 mg/L	0.0517	97	70-130			
Arsenic, total	0.125	0.00050 mg/L	0.119	105	70-130			
Barium, total	0.693	0.0050 mg/L	0.801	86	70-130			
Beryllium, total	0.0464	0.00010 mg/L	0.0501	93	70-130			
Boron, total	3.56	0.0500 mg/L	4.11	87	70-130			
Cadmium, total	0.0486	0.000010 mg/L	0.0503	97	70-130			
Calcium, total	10.2	0.20 mg/L	10.7	96	70-130			
Chromium, total	0.254	0.00050 mg/L	0.250	102	70-130			
Cobalt, total	0.0393	0.00010 mg/L	0.0384	102	70-130			
Copper, total	0.480	0.00040 mg/L	0.487	99	70-130			
Iron, total	0.512	0.010 mg/L	0.504	102	70-130			
Lead, total	0.269	0.00020 mg/L	0.278	97	70-130			
Lithium, total	0.387	0.00010 mg/L	0.398	97	70-130			
Magnesium, total	3.90	0.010 mg/L	3.59	109	70-130			
Manganese, total	0.109	0.00020 mg/L	0.111	99	70-130			
Molybdenum, total	0.194	0.00010 mg/L	0.196	99	70-130			
Nickel, total	0.252	0.00040 mg/L	0.248	101	70-130			
Phosphorus, total	0.255	0.050 mg/L	0.213	120	70-130			
Potassium, total	6.29	0.10 mg/L	5.89	107	70-130			
Selenium, total	0.127	0.00050 mg/L	0.120	105	70-130			
Sodium, total	9.68	0.10 mg/L	8.71	111	70-130			
Strontium, total	0.386	0.0010 mg/L	0.393	98	70-130			
Thallium, total	0.0784	0.000020 mg/L	0.0787	100	70-130			
Uranium, total	0.0324	0.000020 mg/L	0.0344	94	70-130			
Vanadium, total	0.411	0.0010 mg/L	0.391	105	70-130			
Zinc, total	2.67	0.0040 mg/L	2.50	107	70-130			
Reference (B1J1467-SRM2)			Prepared	: 2021-10-14, Analyze	d: 2021-1	10-17		
Aluminum, total	0.320	0.0050 mg/L	0.299	107	70-130			
Antimony, total	0.0508	0.00020 mg/L	0.0517	98	70-130			
Arsenic, total	0.125	0.00050 mg/L	0.119	105	70-130			
Barium, total	0.692	0.0050 mg/L	0.801	86	70-130			
Beryllium, total	0.0482	0.00010 mg/L	0.0501	96	70-130			
Boron, total	3.84	0.0500 mg/L	4.11	93	70-130			
Cadmium, total	0.0489	0.000010 mg/L	0.0503	97	70-130			
Calcium, total	10.6	0.20 mg/L	10.7	99	70-130			
Chromium, total	0.255	0.00050 mg/L	0.250	102	70-130			
Cobalt, total	0.0393	0.00010 mg/L	0.0384	102	70-130			
Copper, total	0.479	0.00040 mg/L	0.487	98	70-130			
Iron, total	0.511	0.010 mg/L	0.504	101	70-130			
Lead, total	0.277	0.00020 mg/L	0.278	100	70-130			
Lithium, total	0.408	0.00010 mg/L	0.398	102	70-130			
Magnesium, total	3.98	0.010 mg/L	3.59	111	70-130			
Manganese, total	0.113	0.00020 mg/L	0.111	102	70-130			
Molybdenum, total	0.195	0.00010 mg/L	0.196	99	70-130			
Nickel, total	0.253	0.00040 mg/L	0.248	102	70-130			
Phosphorus, total	0.251	0.050 mg/L	0.213	118	70-130			
Potassium, total	6.42	0.10 mg/L	5.89	109	70-130			
Selenium, total	0.126	0.00050 mg/L	0.120	105	70-130			
Sodium, total	9.89	0.10 mg/L	8.71	114	70-130			
Strontium, total	0.398	0.0010 mg/L	0.393	101	70-130			
Thallium, total	0.0809	0.000020 mg/L	0.0787	103	70-130			
Uranium, total	0.0333	0.000020 mg/L	0.0344	97	70-130			
Vanadium, total	0.410	0.0010 mg/L	0.391	105	70-130			
Zinc, total	2.66	0.0040 mg/L	2.50	106	70-130			
								00 . (

REPORTED TOElk River AllianceWORK ORDER21J1168PROJECTERA-CBWMREPORTED2021-11-05 16:36

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Total Metals, Batch B1J1498									
Blank (B1J1498-BLK1)			Prepared	I: 2021-10-1	4, Analyze	d: 2021-	10-15		
Mercury, total	< 0.000010	0.000010 mg/L							
Blank (B1J1498-BLK2)			Prepared	I: 2021-10-1	4, Analyze	d: 2021-	10-15		
Mercury, total	< 0.000010	0.000010 mg/L							
Reference (B1J1498-SRM1)			Prepared	I: 2021-10-1	4, Analyze	d: 2021-	10-15		
Mercury, total	0.00577	0.000010 mg/L	0.00581		99	70-130			
Reference (B1J1498-SRM2)			Prepared	I: 2021-10-1	4, Analyze	d: 2021-	10-15		
Mercury, total	0.00569	0.000010 mg/L	0.00581		98	70-130			

QC Qualifiers:

SPK1 The recovery of this analyte was outside of established control limits. The data was accepted based on performance of other batch QC.

Appendix D: Benthic Macroinvertebrate Taxonomy Report

Elk River Alliance 73

ELK River Alliance 2021 CABIN Bentho Taxonomist: Pina V Date: March 8, 202	/iola		Site Stream CABIN study Sampling date Device Habitat % sorted	ALX001 Alexander Creek CBWQ-Elk 09/15/2021 kicknet riffle 5/100	ALX003 Alexander Creek CBWQ-Elk 09/15/2021 kicknet riffle 6/100	BOI001 Boivin Creek CBWQ-Elk 10/05/2021 kicknet riffle 5/100	BOI002 Boivin Creek CBWQ-Elk 10/05/2021 kicknet riffle 7/100	COL001 Coal Creek CBWQ-Elk 10/06/2021 kicknet riffle 5/100	COL003 Coal Creek CBWQ-Elk 10/06/2021 kicknet riffle 11/100	CBWQ-Elk	CBWQ-Elk	MOR001 Morrissey Creek CBWQ-Elk 10/04/2021 kicknet riffle 5/100	MOR002 Morrissey Creek CBWQ-Elk 10/04/2021 kicknet riffle 11/100
Order	Family	Genus	Species										
Anellida-Oligochae	eta Enchytraeidae Lumbriculidae Naididae (Tubificidae)		0 2 3 0	0		0 0 0	1 0 0 52		12 0 0 114		0 0 0	0
Acari-Trombidiforn	nes			0	0	1	0	1	0	1	0	0	0
	Aturidae	Aturus		0	0	0	0	0		1	0	0	0
	Hydryphantidae	Protzia		0	0	0	0	0		0	0	1	0
	Hygrobatidae Lebertiidae	Hygrobates Lebertia		6		0	0	4	3	33	10	8	
	Sperchontidae	Sperchon		2	1	1	0	2	2	2	0	3	
		Sperchonopsis		0	0	0	0	0		0	0	2	0
	Torrenticolidae	Testudacarus		0			0	0		6	17	1	0
Collembola		Torrenticola		1	0	0	0	4	0	1 0	0	1	0
Coleoptera	Dytiscidae			0			0	0		0		0	
•	Elmidae			0	0	0	0	2	0	4	43	3	1
		Heterlimnius		8	8	0	0	1	8	19	181	2	
		Narpus		0	0	0	0	0		0	1	0	0
Diptera	Ceratopogonidae	Optioservus		0	0	0	0	0		0	0	5	
Diptera	Chironomidae			18	9	9	19	79	166	1 142	33	12	122
	Empididae			0			0	0	0	2	0	0	
		Chelifera		2	7	0	0	1	0	0	0	1	1
		Wiedemannia		0		0	0	3	1	15	1	0	
	Pelecorhynchidae	Glutops		0		0	0	0		0	1 202	0	
	Psychodidae Simuliidae	Pericoma/Telmatoscopus		78 1	18 0	2	10	3	1	69 1	203	0	0
		Helodon		0	0	9	4	0		0	0	0	0
		Simulium		3	0	0	0	0	0	9	0	0	0
	Tipulidae			0		0	0	41	0	0	0	0	
		Antocha		0	0	0	0	8	0	9	11	12	2
		Dicranota Hexatoma		1 0	0	0	0	0	0	2	5	0	
		Limnophila		0		0	0	0		0		2	
		Tipula (Arctotipula)		0		0	0	0		1	0	0	
Ephemeroptera	Ameletidae	Ameletus		1	0	0	0	2	43	0	0	0	4
	Baetidae			0			0	2	0	5	3	0	
		Baetis		33 0	40	20	17 0	13	23 29	49 0	218	8	71 5
	Ephemerellidae	Diphetor		40		2	10		13	13	68	2	
		Caudatella		3	7	0		0		0	0	0	0
			Drunella coloradensis	0	1	0	0	0	0	0	0	0	0
			Drunella doddsi	5	6	15	51	1	0	1	45	1	1
			Drunella grandis/spinifera	0		0	0			2	3	0	
	Heptageniidae	Cinygmula		13 28	26 33	41 48	29 15	8 36	3 13	3	10 15	9	3 26
		Epeorus		2	22	4	12	5	4	1	0	11	12
		Rhithrogena		7	5	55	23	0	0	0	2	0	0
	Leptophlebiidae			0		0	0	4	1	0		6	
		Neoleptophlebia		0		0	0	1	0	0	0	0	
Plecoptera	Capniidae			3 2	2	1	0	1		21	26	0	0 16
	Chloroperlidae			1	1	0	10	0		4	19	0	9
		Sweltza		3	3	0	1	0	4	5	11	0	18
	Leuctridae			0		0	0	0		0		0	
	Nemouridae	Visoka		0	0	2	0	0		0	0	0	1
		Zapada		3	2	2	0			3	3	0	4
			Zapada cinctipes	25	12	0	0	0		56	100	7	1
			Zapada columbiana	0		37	12			5	3	1	1
			Zapada oregonensis/haisi	8	7	0				0	1	0	
	Peltoperlidae Perlidae	Yoraperla		0 2						0	0	0	
	. crituae	Doroneuria		0			0			7		2	
		Hesperoperla		0						1	0	0	
	Perlodidae			2				0		0	5	0	
		Megarcys		2			8	0		0		0	
	Taeniopterygidae	Skwala		0 20	0 26	0 323	0 86	5	0	0	0	2	
Trichoptera	raemopterygidae			0			0			0		0	
•	Apatanidae	Apatania		4	0	0	0	2	0	3	32	0	
		Pedomoecus		1	0		0	0		0		0	
	Brachycentridae	Brachycentrus		2			0		0	0	0	0	
	Glossosomatidae	Micrasema Glossosoma		0 103	0	0	0	0		17 11	47 0	12 0	
	Hydropsychidae	Giossosonia		103	1	0	0	1	0	5	3	2	0
	.,,.,	Artopsyche		2			0	0		1		0	
		Hydropsyche		0			0	8		27	26	33	0
		Parapsyche		3	2	0		0		0	0	0	
	Hydroptilidae	Hydroptila		0			0	137	0	2 11		0 167	0
	Lepidostomatidae Rhyacophilidae	Lepidostoma Rhyacophila		11	0	0	0	137		11	1	167	2
	.,	,	Rhyacophila betteni gr.A	0		0				1		0	
			Rhyacophila narvae	2	1	0				0	0	0	
			Rhyacophila sibirica gr., atrata complex	9						0		0	0
			Rhyacophila sibirica gr., vetina complex		0			0		0	0	0	
	Uenoidae	Neothremma	Rhyacophila vemna/brunnea	0	3	0	6	0		2	22 1	0	
	Genoidae	Neothremma Oligophlebodes		0						1	82	0	
Cnidaria	Hydridae	Hydra		0					0	0		0	
				•									

Appendix E: Stream Report

Elk River Alliance 74

Preliminary DNA Data

Elk River watershed, BC
Elk River Alliance - Community Based Water Monitoring

June 2022

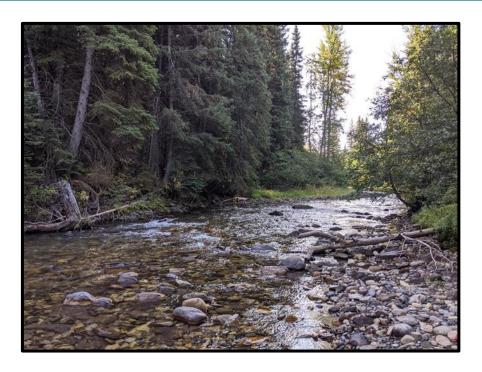


Photo: Alexander Creek, Credit: Elk River Alliance

www.STREAM-DNA.com

Hajibabaei Lab, Centre for Biodiversity Genomics, University of Guelph

WWF Canada Environment and Climate Change Canada Living Lakes Canada

Table of Contents

1. INTRODUCTION	2
1.1 Benthic Macroinvertebrates	2
1.2 Background of STREAM	3
1.3 Objective of Report	6
2. METHODOLOGY	6
2.1 Study Area	6
2.2 DNA Sampling and Processing Methods	7
2.2.1 Measures to Avoid DNA Contamination	7
2.2.2 Benthic Macroinvertebrate Field Sampling Protocol	7
2.2.3 Laboratory Methods	7
3. RESULTS	8
3.1 Overview	8
3.2 Taxonomic Coverage	9
4. REFERENCES	12
5. APPENDICES	13
6. GLOSSARY	13

DISCLAIMER: This report is a preliminary report based on the samples and information provided by the corresponding organisation. Identifications of taxa are based on best available information at time of analysis and reporting.

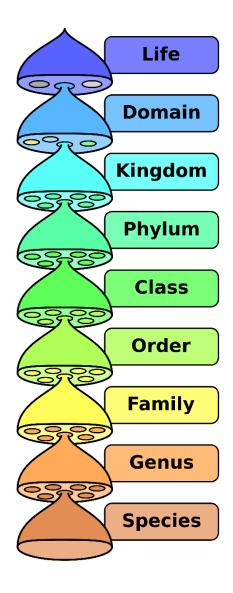
1. INTRODUCTION

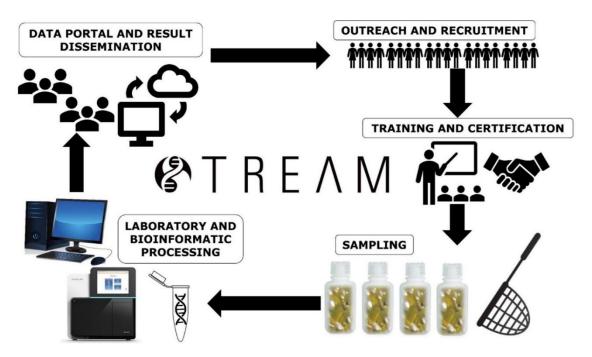
1.1. Benthic Macroinvertebrates

Freshwater benthic macroinvertebrates are typically insect orders, as well as crustaceans (e.g. crayfish), gastropods (e.g. snails), bivalves (e.g. freshwater mussels) and oligochaetes (e.g. worms), which are located on or within the benthic substrate of freshwater systems (i.e. streams, rivers, lakes; (Covich et al., 1999; Schmera et al., 2017). Benthic macroinvertebrates occupy important roles in the functioning of freshwater ecosystems, namely nutrient cycling within aquatic food webs and also influence numerous processes including microbial production and release of greenhouse gases (Covich et al., 1999; Schmera et al., 2017).

Biological monitoring (biomonitoring), referring to the collection and identification of particular aquatic species is an effective method for measuring the health status of freshwater systems. Currently, macroinvertebrates are routinely used for biomonitoring studies in freshwater habitats because they are relatively sedentary, have high species richness and a range of responses to different environmental stressors and contaminants, including temperature (Curry et al., 2018; Geest et al., 2010; Rosenberg and Resh, 1993; Sidney et al., 2016). Some groups of macroinvertebrates (mayflies, Ephemeroptera; stoneflies, Plecoptera and caddisflies, Trichoptera), commonly referred to as EPT groups, are more sensitive to change in the aquatic environment and are deemed important bioindicator taxa for assessing freshwater quality (Curry et al., 2018; Hajibabaei et al., 2012, 2011).

Traditionally, macroinvertebrates are identified to family level (**Figure 1**) through morphological identification using microscopy, however there has been a shift from this labour-intensive methodology to a DNA-based approach (Curry et al., 2018; Hajibabaei et al., 2012, 2011). 'Biomonitoring 2.0' combines bulk-tissue DNA collection (i.e. benthos) with next-generation sequencing (NGS), to produce high-quality data in large quantities and allows identification to a finer resolution than traditional methods (Baird and Hajibabaei, 2012; Hajibabaei et al., 2012).




Figure 1. Graphical representation the classification of organisms.

1.2. Background of STREAM

STREAM (Sequencing The Rivers for Environmental Assessment and Monitoring), is a biomonitoring project, which involves the combination of community based monitoring and DNA metabarcoding technologies to assess the benthic macroinvertebrate communities in watersheds across Canada (**Figure 2**). STREAM is a collaboration between World Wildlife Fund (WWF) Canada, Living Lakes Canada

(LLC) and Environmental and Climate Change Canada (ECCC), led by the Hajibabaei Lab at Centre for Biodiversity Genomics (University of Guelph, Canada). STREAM is integrated with the Canadian Aquatic Biomonitoring Network (CABIN) programme, through the implementation of existing nationally standardized protocols for freshwater monitoring. The aquatic biodiversity data generated in STREAM will be added to the existing CABIN database, to improve our understanding of the health of Canadian watersheds.

The main objective of STREAM is to generate baseline benthic macroinvertebrate DNA data from across Canada. To understand the health status of freshwater systems, we first need to understand the natural fluctuations and trends of benthic macroinvertebrates, especially in locations which are data deficient. By building this baseline, in years to come we can investigate the longer-term trends and begin to understand the impact of issues, such as climate change, on freshwater systems. STREAM was established with the main premise of fast-tracking the generation of benthic macroinvertebrate data from 12-18 months to ~2 months, while increasing the taxonomic resolution of the data produced.

Figure 2. Graphical representation of the STREAM collaborative workflow for DNA biomonitoring of benthic invertebrates.

1.3. Objective of Report

Data and information included in this report is a preliminary examination of results from the Elk River watershed, within the Columbia Basin (BC), which consists of a list of the macroinvertebrate taxa detected within the samples submitted. This report aims to highlight the different macroinvertebrate EPT taxa and provide basic richness metrics as a useful contribution for community groups to assess river health. This report also includes data from 2020 sampling.

1.4. Study Objective

Community-based water monitoring (CBWM) groups collected baseline Elk River tributary habitat data to increase community water literacy and understanding of the Elk River Watershed. Monitoring and research is conducted by trained staff and volunteers and presented in easily understood terminology to the community, including updates on the current status of aquatic health and concerns regarding future trends. Community members are educated through the sharing of data to the public at annual workshops, summer markets, direct participation with the program, and mixed media reporting. This increases water literacy and opens a two-way dialogue with residents to discuss community concerns regarding watershed health.

2. METHODOLOGY

2.1. Study Area

From Sept-Oct 2021, this study was conducted at five sampling locations within the Elk River watershed (BC; Figure 3). Sampling was conducted by the Elk River Alliance for benthic macroinvertebrate monitoring with STREAM.

Additional site information, including coordinates is provided in Appendix A

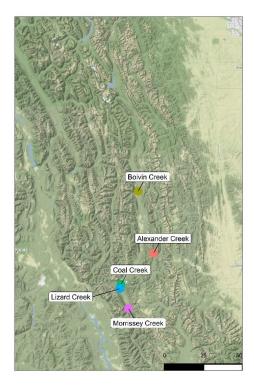


Figure 3. Map of sampling locations within the Elk River watershed (BC). Scale bar shown in kilometres.

2.2. DNA Sampling and Processing Methods 2.2.1. Measures to Avoid DNA Contamination

Prior to sampling, kick-nets were sanitized in bleach for 45 minutes and kept in clean garbage bags until they were used in the field. Gloves were used when handling all sampling materials to avoid contamination. During the kick-netting, the surveyor in the water wore two pairs of gloves while handling the kick-net. The outer pair of gloves was removed prior to transferring the contents into sampling containers so that the gloves used when contacting the sample were guaranteed to be clean. Each sampling container was individually sealed in a Ziploc bag prior to placing them in the cooler.

2.2.2. Benthic Macroinvertebrate Field Sampling Protocol

Benthic macroinvertebrate DNA samples were collected following the STREAM Procedure for collecting benthic macroinvertebrate DNA samples in wadeable streams (v1.0 June 2019) and the CABIN Field Manual for Wadeable Streams (2012). The STREAM procedure outlines steps to minimize DNA contamination and preserve DNA samples and was employed in conjunction with sampling steps outlined in the

CABIN manual. All samples collected were transported to the University of Guelph Centre for Biodiversity Genomics.


2.2.3. Laboratory Methods

Benthic samples were preserved in antifreeze and stored at -20°C until processing. Benthic samples were coarsely homogenized in a sterile blender and DNA was extracted using a DNeasy® PowerSoil® Pro kit (Qiagen, CA) kit. Extracted DNA was then processed following the standard Hajibabaei Lab protocol for Next-Generation Sequencing (NGS). Sequences were then processed through the MetaWorks (v1.6.4) pipeline: https://github.com/terrimporter/MetaWorks.

3. RESULTS

3.1. Overview

The raw data output from NGS produced sequences for a range of taxa. This taxa list was reduced to only sequences that identified macroinvertebrates associated with freshwater and riparian ecosystems, and that were of high enough quality to match reference sequences. These results consisted of **34 Orders**, **87 Families**, **152 Genera**, **and 160 Species of invertebrates**. After normalizing, species richness (number of species present) ranged from 13 in ALX-1C (2020) to 41 in ALX-1C (2021) (**Figure 4**). A full taxonomic list of macroinvertebrates identified to the raw genus and species level is included as a separate Excel spreadsheet (RP66_Taxonomy).

Figure 4. Species richness of each site sampled. Only species taxonomically assigned with high confidence (bootstrap support >= 0.70) are included. Based on normalized data.

3.2. Taxonomic Coverage

A range of macroinvertebrate species were detected. Traditional bioindicator EPT species were detected across the sampling sites, including 27 species of Ephemeroptera (mayflies), 31 species of Plecoptera (stoneflies) and 27 Trichoptera (caddisflies; **Table 2**). Some families of these EPT groups are typically sensitive to many pollutants in the stream environment and are therefore associated with clean water (Gresens et al., 2009; Laini et al., 2019; Loeb and Spacie, 1994).

Please refer to the 'Macroinvertebrate Bioindicator Families Guide v1.2' attached with your data or visit the corresponding website here for more information on approximate tolerances for the species detected in your sites.

Note: The benthic macroinvertebrate kick-net sample procedure often results in collection of both aquatic and terrestrial taxa, however terrestrial taxa are not identified using the traditional taxonomic identification methods. Due to the nature of DNA metabarcoding, both terrestrial and aquatic macroinvertebrates are identified and described using the DNA approach in this report.

Table 1. List of Ephemeroptera, Plecoptera, Trichoptera (EPT) taxa identified to the species level. P = present. Grey cells indicate absence. Site names for each column refer to site code (see Appendix A). Only species taxonomically assigned with high confidence (bootstrap support >= 0.70) are included.

					2020				2021					
Order	Family	Common Name	Species	ALX-1	BOV-1	COL-1	LIZ-1	MOR-1	ALX-1	BOI-1	COL-1	LIZ-1	MOR-1	
Ephemeroptera	Ameletidae	Comb-mouthed minnow mayflies	Ameletus bellulus						Р					
Ephemeroptera	Ameletidae	Comb-mouthed minnow mayflies	Ameletus celer				Р			Р				
Ephemeroptera	Ameletidae	Comb-mouthed minnow mayflies	Ameletus cooki					Р						
Ephemeroptera	Baetidae	Small minnow mayflies	Acentrella turbida				Р	Р		Р				
Ephemeroptera	Baetidae	Small minnow mayflies	Baetis bicaudatus	Р	Р	Р	Р		Р	Р				
Ephemeroptera	Baetidae	Small minnow mayflies	Baetis phoebus		Р	Р		Р	Р					
Ephemeroptera	Baetidae	Small minnow mayflies	Baetis tricaudatus		Р		Р	Р	Р	Р	Р	Р	Р	
Ephemeroptera	Baetidae	Small minnow mayflies	Diphetor hageni								Р		Р	
Ephemeroptera	Ephemerellidae	Spiny crawler mayflies	Drunella coloradensis	Р	Р	Р	Р		Р	Р				
Ephemeroptera	Ephemerellidae	Spiny crawler mayflies	Drunella doddsii	Р	Р	Р	Р	Р	Р	Р	Р	Р		
Ephemeroptera	Ephemerellidae	Spiny crawler mayflies	Drunella flavilinea		Р	Р		Р	Р					
Ephemeroptera	Ephemerellidae	Spiny crawler mayflies	Drunella grandis		Р	Р		Р	Р		Р	Р	Р	
Ephemeroptera	Ephemerellidae	Spiny crawler mayflies	Drunella spinifera		Р									
Ephemeroptera	Ephemerellidae	Spiny crawler mayflies	Ephemerella subvaria				Р						Р	
Ephemeroptera	Ephemerellidae	Spiny crawler mayflies	Ephemerella tibialis		Р	Р		Р	Р					
Ephemeroptera	Heptageniidae	Flat-headed mayflies	Cinygmula spJMW3	Р	Р	Р	Р		Р	Р	Р			
Ephemeroptera	Heptageniidae	Flat-headed mayflies	Cinygmula subaequalis								Р			
Ephemeroptera	Heptageniidae	Flat-headed mayflies	Epeorus albertae								Р		Р	
Ephemeroptera	Heptageniidae	Flat-headed mayflies	Epeorus deceptivus	Р	Р	Р	Р		Р	Р				
Ephemeroptera	Heptageniidae	Flat-headed mayflies	Epeorus grandis	Р	Р		Р	Р	Р	Р				
Ephemeroptera	Heptageniidae	Flat-headed mayflies	Epeorus longimanus				Р		Р	Р	Р			
Ephemeroptera	Heptageniidae	Flat-headed mayflies	Maccaffertium vicarium		Р								Р	
Ephemeroptera	Heptageniidae	Flat-headed mayflies	Rhithrogena robusta	Р	Р		Р	Р	Р	Р				
Ephemeroptera	Leptophlebiidae	Prong-gilled mayflies	Habrophlebia vibrans										Р	
Ephemeroptera	Leptophlebiidae	Prong-gilled mayflies	Paraleptophlebia heteronea		Р	Р		Р			Р		Р	
Ephemeroptera	Leptophlebiidae	Prong-gilled mayflies	Paraleptophlebia memorialis				Р						Р	
Ephemeroptera	Siphlonuridae	Primitive minnow mayflies	Siphlonurus occidentalis				Р							

Table 1 cont.

							2020			2021				
					į.			묫	_		1		묫	
Oudou	Family	Common Name	Smeries	ALX-1	BOV-1	COL-1	LIZ-1	MOR-1	ALX-1	BOI-1	COL-1	LIZ-1	MOR-1	
Order Plecoptera	Family Capniidae	Common Name Small winter stoneflies	Species Capnia coloradensis	⋖	8	J	P	2	 	В	J			
Plecoptera	Capniidae	Small winter stoneflies	Capnia gracilaria				P		1					
Plecoptera	Capniidae	Small winter stoneflies	Eucapnopsis brevicauda		Р	P	P	Р	Р	Р	P		P	
Plecoptera	Capniidae	Small winter stoneflies	Utacapnia columbiana		Ė	Ė	P	Ė		_	P		Ė	
Plecoptera	Capniidae	Small winter stoneflies	Utacapnia logana					Р			P			
Plecoptera	Chloroperlidae	Green stoneflies	Alloperla serrata	Р				Ė						
Plecoptera	Chloroperlidae	Green stoneflies	Paraperla frontalis		Р	Р	Р					Р		
Plecoptera	Chloroperlidae	Green stoneflies	Plumiperla diversa		Ė	Ė	P		 			Ė		
Plecoptera	Chloroperlidae	Green stoneflies	Sweltsa borealis		Р		P		1					
Plecoptera	Chloroperlidae	Green stoneflies	Sweltsa coloradensis		Ė			Р	Р		Р		Р	
Plecoptera	Chloroperlidae	Green stoneflies	Sweltsa urticae	Р				Ė		Р			Ė	
Plecoptera	Leuctridae	Rolled-winged stoneflies	Paraleuctra occidentalis	P	Р		Р		_	P		Р		
Plecoptera	Nemouridae	Spring stoneflies	Prostoja besametsa		P	Р	P		Р	_	Р	P		
Plecoptera	Nemouridae	Spring stoneflies	Visoka cataractae		Ė	Ė	P			Р		P		
Plecoptera	Nemouridae	Spring stoneflies	Zapada cinctipes	Р	Р	Р	P	Р	Р	P	Р	P	P	
Plecoptera	Nemouridae	Spring stoneflies	Zapada columbiana	P	P	P	P	P	P	P		P	Ė	
Plecoptera	Nemouridae	Spring stoneflies	Zapada haysi	P	P	P	P	Ė	P	P		P		
Plecoptera	Nemouridae	Spring stoneflies	Zapada oregonensis	P	P	P			P	P		P		
Plecoptera	Peltoperlidae	Roach-like stoneflies	Yoraperla brevis	_	Ė	_			Ė	P		,		
Plecoptera	Perlidae	Common stoneflies	Calineuria californica	P					 	r				
Plecoptera	Perlidae	Common stoneflies	Doroneuria theodora	P	Р	Р	P	P	Р		Р	P	Р	
Plecoptera	Perlidae	Common stoneflies	Hesperoperla pacifica		r	Г	P	P	P		P	P		
Plecoptera	Perlodidae	Springflies	Isoperla fulva				-	-	_		P	r		
· ·	Perlodidae	Springflies	Isoperla julva		Р		P		 		_	P		
Plecoptera Plecoptera	Periodidae	Springflies	Kogotus modestus		P	P	P		-			P		
Plecoptera	Periodidae	Springflies	Megarcys signata	Р	P	P	P		-					
Plecoptera	Perlodidae	Springflies	Megarcys watertoni	P	P	Р	P		Р	P		Р		
Plecoptera	Perlodidae	Springflies	Setvena bradleyi	P	г	,	P		Ė	P		r		
	Pteronarcyidae	Giant stoneflies	Pteronarcys princeps	F				P		r				
Plecoptera Plecoptera	Taeniopterygidae	Winter stoneflies	Doddsia occidentalis	P	P	P	P	Р	Р	P				
Plecoptera	Taeniopterygidae	Winter stoneflies	Taenionema pallidum	P	P	P	P		P	Р				
Trichoptera	Apataniidae	Early smoky wing sedges	Apatania comosa		Р	Р		P	Р		Р	P	P	
Trichoptera	Apataniidae	Early smoky wing sedges	Apatania sorex		P	P		P	Ė		Ĺ	,	Ė	
Trichoptera	Brachycentridae	Humpless casemaker caddisflies	Brachycentrus americanus		Ė	_		P	P					
Trichoptera	Brachycentridae	Humpless casemaker caddisflies	Micrasema bactro			Р		P	P			Р	Р	
Trichoptera	Glossosomatidae	Saddle casemaker caddisflies	Glossosoma alascense			_	P	_	L.			P	Ė	
Trichoptera	Glossosomatidae	Saddle casemaker caddisflies	Glossosoma pyroxum		Р	Р			Р			P		
Trichoptera	Glossosomatidae	Saddle casemaker caddisflies	Glossosoma verdonum	Р	Ė	_			P	P				
Trichoptera	Hydropsychidae	Net-spinning caddisflies	Arctopsyche grandis	_	Р	Р	P	P	P		Р	P	P	
Trichoptera	Hydropsychidae	Net-spinning caddisflies	Arctopsyche inermis		Ė	_		Ė			P	,	Ė	
Trichoptera	Hydropsychidae	Net-spinning caddisflies	Ceratopsyche oslari		Р	Р		P			P	P	P	
Trichoptera	Hydropsychidae	Net-spinning caddisflies	Hydropsyche oslari		Ė	_		P			P	P	P	
Trichoptera	Hydropsychidae	Net-spinning caddisflies	Parapsyche elsis	Р	Р	Р	P	Ė	Р		Ĺ	,	Ė	
Trichoptera	Lepidostomatidae	Bizarre caddisflies	Lepidostoma pluviale		Ė	P		Р			Р		Р	
Trichoptera	Lepidostomatidae	Bizarre caddisflies	Lepidostoma rayneri			P		P			P		P	
Trichoptera	Leptoceridae	Long-horned caddisflies	Oecetis inconspicua	Р				Ė					Ė	
Trichoptera	Limnephilidae	Northern caddisflies	Onocosmoecus unicolor	_		Р		P						
Trichoptera	Philopotamidae	Finger-net caddisflies	Dolophilodes aequalis			Ĺ	P	Ė						
Trichoptera	Rhyacophilidae	Free-living caddisflies	Rhyacophila angelita					P			Р		P	
Trichoptera	DI 1:1: I	5 P. 1 P. C.	01 111		D			P	D		P	P		
Trichoptera	Rhyacophilidae	Free-living caddisflies	Rhyacophila coloradensis		Ė			Ė	P		Ė	Ĺ		
Trichoptera	Rhyacophilidae	Free-living caddisflies	Rhyacophila hyalinata						P					
Trichoptera	Rhyacophilidae	Free-living caddisflies	Rhyacophila narvae						P					
Trichoptera	Rhyacophilidae	Free-living caddisflies	Rhyacophila pellisa		Р				F					
Trichoptera	Rhyacophilidae	Free-living caddisflies	Rhyacophila vaccua		P				Р			P		
Trichoptera	Rhyacophilidae	Free-living caddisflies	Rhyacophila vaccua		۲		P		ř			F		
	Uenoidae	Stonecase caddisflies	Neophylax rickeri								P	P		
Trichoptera Trichoptera			Oligophlebodes sierra								P	P		
Trichoptera	Uenoidae	Stonecase caddisflies	Tongophieboues sierru									L P		

3.2. Whirling Disease Host Detection

Whirling Disease is a disease caused by *Myxobolus cerebralis*, a microscopic parasite that affects salmonid fish such as trout, salmon and whitefish (Gilbert and Granath, 2003). *M. cerebralis* requires a specific aquatic oligochaete (worm) intermediate

host, *Tubifex tubifex* (sludge worm). This species is most commonly associated with poor-quality, eutrophic conditions (Gilbert and Granath, 2003).

While there are still <u>no documented cases of Whirling disease in BC</u>, it has been confirmed in several locations in Alberta near the BC border. Across the five sites sampled, *T. tubifex* was detected in LIZ-01 and MOR-01 (Lizard and Morrisey Creek; 2021). If the whirling disease causal agent was to spread into BC, this would be a high-risk site for a whirling disease outbreak.

4. REFERENCES

- Baird, D.J., Hajibabaei, M., 2012. Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol. Ecol. 21, 2039-2044. https://doi.org/10.1111/j.1365-294X.2012.05519.x
- Covich, A.P., Palmer, M.A., Crowl, T.A., 1999. The Role of Benthic Invertebrate Species in Freshwater Ecosystems: Zoobenthic species influence energy flows and nutrient cycling. BioScience 49, 119-127. https://doi.org/10.2307/1313537
- Curry, C.J., Gibson, J.F., Shokralla, S., Hajibabaei, M., Baird, D.J., 2018. Identifying North American freshwater invertebrates using DNA barcodes: are existing COI sequence libraries fit for purpose? Freshw. Sci. 37, 178-189. https://doi.org/10.1086/696613
- Geest, J.L.V., Poirier, D.G., Sibley, P.K., Solomon, K.R., 2010. Measuring bioaccumulation of contaminants from field-collected sediment in freshwater organisms: A critical review of laboratory methods. Environ. Toxicol. Chem. 29, 2391-2401. https://doi.org/10.1002/etc.326
- Gilbert, M.A., Granath, W.O., 2003. Whirling Disease of Salmonid Fish: Life Cycle, Biology, and Disease. J. Parasitol. 89, 658-667.
- Gresens, S.E., Smith, R.J., Sutton-Grier, A.E., Kenney, M.A., 2009. Benthic macroinvertebrates as indicators of water quality: The intersection of science and policy. https://doi.org/10.1163/187498209X12525675906077
- Hajibabaei, M., Shokralla, S., Zhou, X., Singer, G.A.C., Baird, D.J., 2011. Environmental Barcoding: A Next-Generation Sequencing Approach for Biomonitoring Applications Using River Benthos. PLOS ONE 6, e17497. https://doi.org/10.1371/journal.pone.0017497
- Hajibabaei, M., Spall, J.L., Shokralla, S., van Konynenburg, S., 2012. Assessing biodiversity of a freshwater benthic macroinvertebrate community through non-destructive environmental barcoding of DNA from preservative ethanol. BMC Ecol. 12, 28. https://doi.org/10.1186/1472-6785-12-28
- Laini, A., Viaroli, P., Bolpagni, R., Cancellario, T., Racchetti, E., Guareschi, S., 2019. Taxonomic and Functional Responses of Benthic Macroinvertebrate Communities to Hydrological and Water Quality Variations in a Heavily Regulated River. Water 11, 1478. https://doi.org/10.3390/w11071478

- Loeb, S., L., Spacie, A., 1994. Biological Monitoring of Aquatic Systems. CRC Press. McQuaid, B., n.d. Watershed Science Institute 30.
- Rosenberg, D.M., Resh, V.H. (Eds.), 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. Springer US.
- Schmera, D., Heino, J., Podani, J., Erős, T., Dolédec, S., 2017. Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia 787, 27-44. https://doi.org/10.1007/s10750-016-2974-5
- Sidney, L.A., Diepens, N.J., Guo, X., Koelmans, A.A., 2016. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates. Aquat. Toxicol. 176, 88-96. https://doi.org/10.1016/j.aquatox.2016.04.017

5. APPENDICES

Appendix A. Summary table of sample sites, including site name, year of collection and site coordinates.

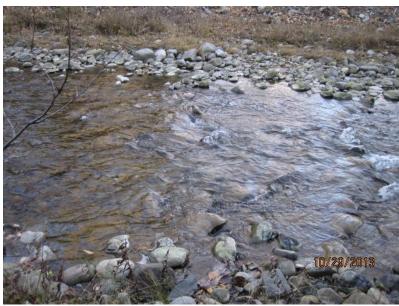
Site	River	Lat	Long	Year
ALX-01	Alexander Creek	49.67394	-114.78	2020 & 2021
BOI-01	Boivin Creek	50.02315	-114.916	2020 & 2021
COL-01	Coal Creek	49.49556	-115.066	2020 & 2021
LIZ-01	Lizard Creek	49.47094	-115.077	2020 & 2021
MOR-01	Morrissey Creek	49.35806	-115.001	2020 & 2021

6. GLOSSARY

Term	Meaning
Benthic/benthos	The ecological region at the lowest level of a body of
	water such as an ocean, lake, or stream, including the
	sediment surface and some sub-surface layers.
Biomonitoring	The science of inferring the ecological condition of an
	ecosystem (i.e. rivers, lakes, streams, and wetlands) by
	examining the organisms that live there.
Bootstrap support	Statistical methods used to evaluate and distinguish the
	confidence of results produced.
Bulk-tissue DNA	This refers to the collection and removal of a reasonable
sample	quantity of representative material (including organisms
	such as river bugs) from a location (i.e. river bed).
DNA extraction	Isolation of DNA from either the target organism (i.e. DNA
	from an insect leg) or from an environmental sample (i.e.
	DNA from a water or benthos sample).

DNA Metabarcoding	Amplification of DNA using universal barcode primers (e.g. universal for invertebrates) to allow sequencing of DNA from target organisms (e.g. invertebrates) from environmental samples (e.g. river water or benthos).
Environmental DNA (eDNA)	The DNA released into the environment through faeces, urine, gametes, mucus, etc. eDNA can result from the decomposition of dead organisms. eDNA is characterized by a complex mixture of nuclear, mitochondrial or chloroplast DNA, and can be intracellular (from living cells) or extracellular. Environmental DNA: DNA that can be extracted from environmental samples (such as soil, water, or air), without first isolating any target organisms.
EPT groups	The three orders of aquatic insects that are common in the benthic macroinvertebrate community: Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies).
Macroinvertebrate	Organisms that lack a spine and are large enough to be seen with the naked eye. Examples of macroinvertebrates include flatworms, crayfish, snails, clams and insects, such as dragonflies.
Metrics	The method of measuring something, or the results obtained from this.
Next-generation sequencing (NGS)	Use of next-generation sequencers (i.e. Illumina) to millions or billions of DNA strands in parallel.
Normalizing	The process of rarefying samples down to the smallest library size - a common practice in DNA metabarcoding methods.
Richness	The number of species represented in an ecological community, landscape or region. Species richness is simply a count of species, and it does not take into account the abundances of the species or their relative abundance distributions.
Riparian	Relating to or situated on the banks of a river.
Sample homogenization	The process of making an environmental sample (i.e. benthos) uniform. For liquid/benthos samples, this often involves mixing using a blender so that DNA is evenly distributed within the sample.
Taxa	Unit used in the science of biological classification, or taxonomy.

Appendix F: Lizard Creek Photos from 2012 to 2021









Elk River Alliance 86