Slocan Valley Wetland and Assessment Program Wetland Invertebrate Assessment Tool (W-F16-10)

Prepared for: the Fish and Wildlife Compensation Program

Prepared by:

Darcie Quamme, MSc., R.P.Bio., Integrated Ecological Research, Nelson, BC. Rhia MacKenzie, BArch., BIT,Slocan River Streamkeepers, Passmore, BC. Richard Johnson, P.Eng., Opus Petroleum Engineering, Roseberry, BC Ryan Durand, R.P.Bio.Durand Ecological Ltd., Crescent Valley, BC And Tysen Ehlers, R.P.Bio.,Tysig Ecological Research, Winlaw, BC

May 30, 2016

Prepared with financial support for the FWCP on behalf of BC Hydro, Province of BC, Environment Canada, Columbia Basin Trust, BC Wildlife Federation, Royal BC Museum, First nations & stakeholders.

This project was undertaken with the financial support of the Government of Canada Ce projet a été réalisé avec l'appui financier du gouvernement du Canada.

Table of Contents

1		Intro	oduct	tion	3
2		Mac	roinv	vertebrate Index of biotic integrity: Stress Gradient	4
3		Field	l and	Laboratory Methods	5
	3.1	L	Mac	roinvertebrate protocols	5
	3.2	2	Field	d sampling	6
	3.3	3	Eme	ergent zone kick samples	6
	3.4	1	Han	dling and preservation of macroinvertebrate samples	7
	3.5	5	Mac	roinvertebrate habitat data	7
	3.6	5	Тахо	pnomic identifications of macroinvertebrates	8
	3.7	7	Wat	er and sediment physiochemistry	9
	3.8	3	Qua	lity Control	. 10
4		Data	Ana	lysis	. 10
	4.1	L	Initi	al trends in physiochemistry	. 10
	4.2	2	Stre	ss gradient: Reduction of variables using PCA	.11
		4.2.1	L	Variable standardization and weighting	12
	4	4.2.2	2	Validation	.13
	4.3	3	Inde	ex of Biotic Integrity for macroinvertebrates	.13
		4.3.1	L	Metric selection	13
	4	4.3.2	2	Index of Biotic Integrity	. 14
5		Resu	ılts		14
	5.1	L	Qua	lity Control	14
	5.2	2	Prel	iminary trends in physiochemistry	. 15
		5.2.1	L	Hierarchical cluster analysis	. 15
		5.2.2	2	Stiff Diagrams of water quality	21
		5.2.3	3	Comparison of water and sediment quality to guidelines	21
	5.3	3	Stre	ss Gradient: Variable selection using principal components analysis	22
		5.3.1	L	Normality and transformation of data	22
		5.3.2	2	Water	23
		5.3.3	3	Sediment	24

SWAMP: Wetland Invertebrate Assessment Tool

	5.3.4	4 Chemical inputs25
	5.3.	5 Physical stress27
	5.3.6	6 Variable selection28
5	5.4	Weighting and Standardization30
6	Mac	roinvertebrate metric selection
e	5.1	Index of Biotic Integrity based on macroinvertebrates
7	Con	clusions
7	7.1	2016 Field season planning41
8	Ackr	nowledgements43
9	Refe	erences
10	A	ppendices49
1	10.1	Appendix 1: Site Locations
1	10.2	Appendix 2: Field meta-data50
1	10.3	Appendix 3: Laboratory analysed water quality data
1	10.4	Appendix 4: Laboratory analysed sediment quality data63
1	10.5	Appendix 5: Water quality guidelines
1	10.6	Appendix 6: Sediment quality guidelines69
1	10.7	Appendix 7: Water quality parameters exceeding guidelines70
1	10.8	Appendix 8: Sediment quality parameters exceeding guidelines71
1	10.9	Appendix 9: Quality control, duplicate values that triggered alerts73
	LO.10 Gradie	Appendix 10: Scatterplots of Stress Score calculation methods and Human Disturbance nt ratings74
1	10.11	Appendix 11: Macroinvertebrate counts76
1	10.12	Appendix 12: Results of ANCOVA of macroinvertebrate metric versus stress score
	LO.13 sites.	Appendix 13: Update on FWCP project condition re: IBI-based evaluation of restoration 90
11	Те	echnical Reports91
1	11.1	Technical Report, Opus: Analysis of water quality using Stiff diagrams91
1	11.2	Technical Report, Rhithron: Macroinvertebrate quality control

Abstract

The Slocan Wetland Mapping and Assessment Project (SWAMP) is a local initiative that brings together professional biologists and citizen scientists to identify sensitive wetlands and establish priorities for restoration and protection in the Slocan Watershed. SWAMP is a collaboration of three societies, Slocan Solutions, Slocan River Streamkeepers and Slocan Lake Stewardship.

The invertebrate component of SWAMP uses Environment Canada's modified CABIN (Canadian Aquatic Biomonitoring Network) protocols to assess wetland condition across a gradient of human activity or stress. The importance of Slocan Valley wetlands have been identified at a grassroots-level by Slocan Valley communities and recognized by regional, provincial and national agencies. The project will be developed under Environment Canada's guidance using modified Canadian Aquatic Biomonitoring Network (CABIN) for wetlands with advice from Dr. Rebecca Rooney of the University of Waterloo. The project will use quantitative measures of wetland stress and biological indicators of wetland health to create a strategic list of wetland priorities based on the Index of Biotic Integrity for the Slocan Watershed to aid in management decisions about restoration and conservation.

We developed quantitative tools to rate wetland stress and biotic integrity that can be used to assess wetlands in the Slocan Watershed to make management decisions about restoration and conservation. We used a multimetric index of biotic integrity (IBI) approach that used macroinvertebrate metrics as an indicator of wetland health.

We identified an initial list of candidate sites that are low in wetland stress and high in biological integrity that are best-case scenario reference conditions for future work and restoration goals. Our work addresses this priority in a quantitative and scientifically valid method.

We calculated a quantitative stress gradient based on chemical and physical stresses using an objective approach. We tested the effect of different scoring methods on the performance of the stress gradient. We attempted to minimize the use of subjective measures with a focus on statistically measured results.

Five macroinvertebrate metrics were selected as indicators of wetland stress across a range of wetland types including: Simpson's Diversity Index, percent *Callibaetis* sp., the number of Clitellata taxa, % Abundance collector-gatherers Number of intolerant taxa, % Diversity of amphipods to (amphipods + bivalves + gastropods). An Index of Biotic Integrity for macroinvertebrates calculated from these indicator metrics showed a strong significant response to increasing wetland stress. However, an increased number of sites are required for further testing, and validation.

All stress gradient scores were effective at separating highly (contaminated sites) and moderately stressed sites from reference sites using all scoring methods. Assessment of stress scores suggested that that three of the six scoring methods that varied in standardization and weighting techniques may be the best methods for wetlands with gradients in metals levels including:

(1) z-score transformation methods with weighting by principle component scores

- (2) percentile binning with weighting by principle component scores and
- (3) z-score transformation methods with weighting by category.

Stress gradient performance also requires further calibration and validation using land cover and population-based GIS variables. This document provides an outline of methodologies for the first stages in developing an index of biotic integrity based on wetland invertebrates as part of the SWAMP project. Further development and research will refine this methodology for the SWAMP program.

1 Introduction

Macroinvertebrates are important wetland indicators of anthropogenic-induced stresses such as habitat degradation, development and contaminants (Kovalenko 2014, Mazzacano 2011, Uzarski et al. 2011, Archer et al. 2010, and Apfelbeck 2000). Few studies of wetlands in British Columbia have included bioassessments of macroinvertebrates with the exception of Adama et al. (2013) and Miller and Hawkes (2013). Assessments of macroinvertebrates provide a unique approach to assessing biointegrity and fit well with methods currently being used by SWAMP (Durand 2014, Durand 2015, and Durand 2016). Macroinvertebrates can also be used an educational tool by local monitoring programs that can facilitate community engagement, integral to long-term conservation and restoration of wetland habitats.

Bioassessments using macroinvertebrates in wetlands have been successfully carried out under the Canadian Aquatic Biomonitoring Network, CABIN, (Tall et al. 2008, Bailey and Reynoldson 2009, Emily McIvor pers. Com. 2015) and other programs in Canada (Adama et al. 2013, Miller and Hawkes 2013, Archer et al. 2010, Eaton 2005) and the United States (Kovalenko et al. 2014, Uzarski et al. 2011, Mazzancano 2011, Jepson et al. 2007, Apfelbeck 2000). These methodologies have the potential to provide further inference about the status of wetlands in the Slocan Valley.

The current SWAMP program has conducted sampling of wetlands using a three Phase process. Phase I involved the identification and mapping of wetlands (Durand 2014). In Phase II and III, a subset of the wetlands identified in 2014 wetland mapping was assessed in site visits (Durand 2015 and 2016). Each wetland surveyed in Phase II and III was classified (MacKenzie, W. and J. Moran. 2004). The SWAMP Steering Committee suggested that macroinvertebrate samples could be integrated with Phase I-III wetland assessments with the objective of developing a protocol for wetland assessment in the Slocan Valley and the West Kootenays. Information from Phase II and II of SWAMP will provide some validation of the macroinvertebrate component of SWAMP (Archer et al. 2010, and Adama et al. 2013).

Currently, the invertebrate component of SWAMP has sampled 24 sites with funding contributions from the National Wetland Conservation Fund, the Fish and Wildlife Compensation Program, the Columbia Basin Trust and the Columbia Basin Watershed Network.

Rebecca Rooney of the University of Waterloo has agreed to provide direction in regards to her work on multimetric wetland indicators that may aid in (1) the assessment phases of planning (Rooney and Azeria 2015, Rooney and Bayley 2012 & 2010) and (2) the evaluation of performance indicators for restoration projects (Bayley et al. 2014).

The goals of the SWAMP invertebrate sampling project are:

- Develop a protocol for wetlands ecosystem assessment based on modified CABIN methods to prioritize opportunities for wetland restoration, conservation and compensation.
- Quantify wetland water resources based on mapping, water/sediment quality and a biological index to assess the health of wetlands in the Slocan Valley.
- Report findings to the larger Slocan Community, the Kootenay Region and the Columbia Basin.

The Objectives of the project are to:

- Carry out water/sediment quality and macroinvertebrate sampling at selected wetlands within the Slocan Watershed.
- Investigate methods to help assess impacts and prioritize wetland restoration opportunities.
- Develop methods under CABIN for invertebrates and water/sediment quality to rate wetland health.
- Assess wetlands in reference condition as well as those affected by invasive species, mining, agriculture and development.
- Develop a multi-metric Index of Biotic Integrity for wetland macroinvertebrates specific to the Kootenay Region.
- Facilitate dialogue between agencies, non-profits and private landowners with regards to sensitive wetland habitats and water resources.

2 Macroinvertebrate Index of biotic integrity: Stress Gradient

In the initial phases of this project, we have taken a multimetric approach to data analysis. However, all field methods were carried out using Environment Canada's CABIN draft protocols for wetlands. As a result, as the sample size increases for our project, our data could also be analysed using the Reference Condition Approach (Bailey and Reynoldson 2009, Bailey et al. 2004, Yates and Bailey 2010a and 2010b) and other multivariate techniques. In addition, Dr. Rebecca Rooney of the University of Waterloo has agreed to provide direction in regards to her work on multimetric wetland indicators (Rooney and Azeria 2015, Rooney and Bayley 2012 & 2010) and restoration evaluation (Bayley et al. 2014).

The steps that we will follow to develop an Index of Biotic Integrity based on wetland macroinvertebrates (Figure 1) include:

- 1. Development of a quantitative stress gradient.
- 2. Relating calculated invertebrate metrics to the stress gradient.
- 3. Sum and scale metrics to produce an index of biotic integrity based on macroinvertebrates.
- 4. Test and validate the index.

The present progress report focusses on Step 1 to Step 3 (Figure 1), the development of a quantitative stress gradient and the Index of Biotic Integrity in an exploratory manner using methods recommended by Rooney and Bayley (2010).

"Stress Gradient" has been termed by Rooney and Bayley (2010) to refer to quantitative ranking of wetland habitats that includes: (1) natural wetland stress that may limit the distribution of invertebrates and (2) anthropogenic activity that may drive alterations in the environmental variables (R. Rooney pers. com. 2016). These methods summarize the variance for large blocks of data that co-vary from physiochemical, habitat, hydro-geomorphic and land cover sources using data reduction techniques (Rooney, pers com. 2016). A smaller number of indicator variables that are highly correlated with independent gradients from the original larger dataset were then combined to create a stress gradient indicative of the physiological stress of the wetland (R. Rooney pers. com. 2016). This quantitative ranking system overcomes issues of subjectivity and expertise-based rating methods (EPA 2002) and can used to independently assess and validate the index of biotic integrity (Rooney and Bayley 2010).

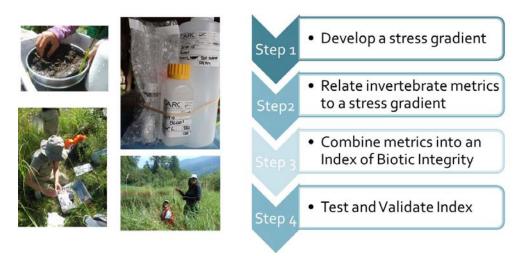


Figure 1. Steps in developing an Index of Biotic Integrity for Macroinvertebrates

3 Field and Laboratory Methods

3.1 Macroinvertebrate protocols

The field protocols used for the SWAMP macroinvertebrate monitoring program follow methods developed by Environment Canada described in Tall et al. (2008) and Baily and Reynoldson (2009). These methods were recommended by Emily McIvor and Alain Armellin of Environment Canada so that data from SWAMP could contribute to the development of a general wetland protocol within CABIN at a National level.

Macroinvertebrate sampling focused on characterizing the community that inhabits the emergent zone of the wetlands. Macroinvertebrates collected from emergent vegetation have been used to

differentiate reference sites from impacted sites in bioassessments of wetland habitats on the wetlands of the St. Lawrence River (Tall et al. 2008), Great Lakes coastal wetlands (Uzarski et al. 2011), marshes in the Niagara area (Archer et al. 2010) and wetlands in Montana (Apfelbeck 2000) and Oregon (Mazzacano 2011). In addition, kick samples of the emergent zone (similar to Tall et al. 2008) are currently being used as part of methods in Environment Canada's Prairie, Quebec and Oil sands protocols (E. McIvor 2015). The kick sampling procedure in wetlands involves a gentle disturbance of bottom sediments and three minute sweeps of the water column in a zig-zag pattern over a 5 m by 5 m quadrat. Thus, macroinvertebrates are collected from the water column, bottom sediments and aquatic plants at each site within the emergent zone.

3.2 Field sampling

A total of 24 sites have been sampled over the course of two years with four sites sampled in 2014 and twenty in2015 (Figure 2, Appendix 1). A field sheet was provided by Environment Canada's CABIN program (June 2015) from their developing field protocol and was used as a basis for field measurements. We sampled upper and lower elevation sites associated with riverine, lacustrine and palustrine wetland types ranging from reference condition to wetlands impacted by mining, agriculture, forest operations, invasive species and development (Appendix 1 and 2).

Sampling occurred in late August in 2014 with funding for only four sites. Further, funding allowed us to sample 20 sites in 2015. We adjusted our sampling months to June and July in 2015 because of a warm spring, low snow pack and low peak stream flows that resulted in low water in associated lakes and wetlands. As a result, we resampled three of the four wetland complexes sampled in 2015 that were sampled in 2014 to examine seasonal variation within the wetlands.

Water and sediment samples were analysed by CARO Analytical Services in Kelowna and Vancouver including a quality control/quality assurance program. Invertebrate samples were sent to Rhithron Associates Inc. for taxonomic analysis. Rhithron invertebrate taxonomists collectively hold 34 Level-II certifications from the Society for Freshwater Science. Rhithron has completed identifications, and prepared and shipped the voucher collection to the Royal BC Museum.

Additionally, we have identified a potential restoration candidate on private land, created a dialogue with private landowners and have buy-in and enthusiasm with regards to restoring their non-functioning wetland. Funding for the restoration project has been obtained from the Fish and Wildlife Compensation Program.

3.3 Emergent zone kick samples

Macroinvertebrates were sampled from the near shore of the emergent zone (\geq 10% emergent vegetation cover) at a depth of approximately 0.5-1 m using a CABIN kick-net of length 45.7 cm, width 25.4 cm, and depth 25.4 cm with a 500 µm mesh net (Environment Canada 2007, Tall et al 2008). The samples were collected in a 5 m by 5 m plot in a timed three minute kick sample similar to protocol used for Quebec wetlands (Tall et al. 2008) and Prairie Wetland Protocol (conference

call, Emily McIvor and Allen Armellin, 2014). This technique involves a gentle disturbance of bottom sediments and sweep in a zig-zag pattern within the water column quadrat at each site.

Photo 1: Field sampling of wetlands in the Slocan River Watershed.

3.4 Handling and preservation of macroinvertebrate samples

Following field sampling, the volume of sediment/vegetative matter in each sample was reduced by gently washing the nets in water well away from sampling area or sample can be taken back to the laboratory and further reduced. All amphibians were removed from nets following (Ministry of Environment, 2008) protocol for safe handling of amphibians. Material was gently poured through a 500 µm sieve and further rinsed.

Sample material was transferred to one litre jars with 80% ethanol used as a preservative. Sample material comprised no more than 50% of the jar. Ethanol was replaced with fresh 80% ethanol (Mazzacano 2011, Jepsen et al. 2007) and this procedure was repeated as an extra precaution. All samples were checked with a hydrometer so as to verify preservation at 80% ethanol prior to shipping and Rhithron reported that the samples were well preserved when they arrived.

3.5 Macroinvertebrate habitat data

Estimates of the relative proportion of vegetation were made within the 5 x 5 m quadrat in the emergent zone. The percent cover of each plant species was measured. The 5 x 5 m quadrat was

marked with cedar stakes following water and macroinvertebrate collection so as not to disturb or damage emergent plants prior to assessment.

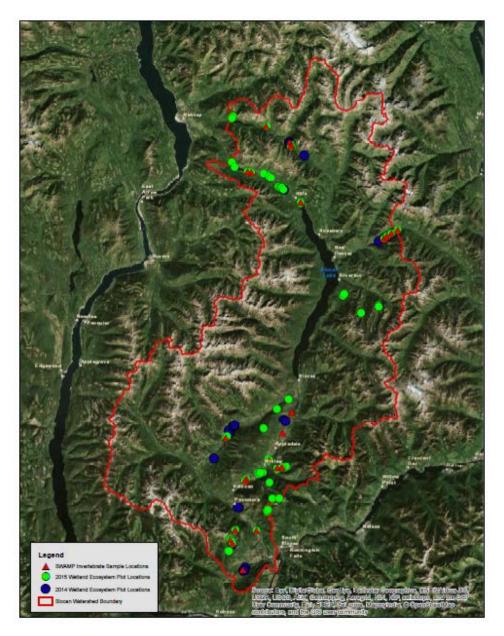


Figure 2. Overview of wetlands described in Phase 3 of SWAMP (map from Ryan Durand)

3.6 Taxonomic identifications of macroinvertebrates

Rhithron, a professional taxonomist based in Missoula, Montana was used for the identification work. Samples collected for the CABIN database were sent to a certified taxonomist that follow procedures outlined in Environment Canada (2012). All laboratory techniques and quality control were carried out according to CABIN methods (Environment Canada 2012).

In addition, the taxonomist shipped the collection of specimens to the Royal BC Museums. Project methods met museum specifications for collection, taxonomic identification and storage of specimens (CABIN 2007 and 2012). In addition to assessing the health of wetlands, this project will help to increase our understanding of the Slocan River watershed and improve our knowledge on the biodiversity of invertebrates in British Columbia.

3.7 Water and sediment physiochemistry

Field measurements of water quality and surface water samples were collected prior to other sampling to prevent contamination of samples using methods of Duncan and Duncan (2012), Uzarski et al. (2011), Bailey and Reynoldson (2009), Clark (2013) and Cavanagh et al (1997) . Field measurements of water quality included: temperature, pH, conductivity, and dissolved oxygen carried out using field meters. These parameters were taken at each of the emergent zone stations. These measurements in addition to turbidity and hardness were repeated at Passmore laboratories using HACH Water Ecology Kit Model AL 36B and bench top meters for pH, specific conductance and turbidity with the exception of dissolved oxygen (field only).

Surface water samples were collected for the following parameters in 2015 including: Phosphorus (measured as total unfiltered Phosphorus), Nitrogen (Total Keldhal Nitrogen, Nitrate, Nitrite, and Ammonia), Alkalinity, Major ions (e.g. Ca, Mg, Na, and K), Total Suspended Solids (TSS), Sulfate, Chlorine, and Dissolved Organic Carbon (Appendix 3). A subset of these parameters was monitored in 2014 when funding was very limited (Appendix 3). One of the goals in 2015 was to evaluate the number of parameters required for monitoring in order to assess the potential to reduce costs for future sampling.

Grab samples of surface sediment were collected using methods described in Duncan and Duncan (2012), Marvin-DiPasquale (2009), and Clark (2013). Total metals from the metals scan carried out by Maxxam (2014) and CARO Laboratories (2015) included: Aluminium, Antimony, Arsenic, Barium, Beryllium, Boron, Bromine, Cadmium, Barium, Chromium, Cobalt, Copper, Fluorine, Iron, Lead, Lithium Manganese, Mercury, Molybdenum, Nickel, Phosphorus, Potassium, Selenium, Silicon, Silver, Strontium, Sulphur, Thallium, Tin, Titanium, Uranium, Vanadium, and Zinc. Heavy metals concentrations were measured in sediment only in 2014 when funding was limited (Appendices 3 and 4). In 2015, metals concentrations were measured in water and sediment along with grain size, and carbon content for sediment.

Prior to sampling for water and sediment quality, all jars were labeled, packed and transported to sites in a field cooler in ziplock bags by site. At each site field personnel labeled all sample jars with site code, time and all other relevant information. Water surface samples were taken wearing latex gloves in a non-disturbed area prior to completing the full wetland invertebrate protocols. The sample jars were wrapped in bubble wrap and immediately put in a cooler with ice packs and sent to CARO and Passmore Laboratories within 24 hours of collection. After water quality samples were collected, sediment samples were taken in the same vicinity at all sites.

3.8 Quality Control

Duplicate sampling of ten percent of the water samples (n=2) sent to Passmore Laboratories of was carried out for parameters that included turbidity (meter) and Hach kit measurements for alkalinity, conductivity, pH and acidity. Duplicate sampling of five percent (n=1) of the water and sediment samples was conducted for samples sent to CARO for a full scan of water quality (51 parameters) and sediment quality parameters (37 parameters).

All data was screened and quality control measures were conducted to assess field and laboratory data collection methods according to quality assurance and quality control field sampling protocols in Clark (2013).

Trip blanks were collected to assess any possible contamination from sample containers, collection at the site, and transport. Field blanks were evaluated using the following equation (Clark 2003):

Blank x difference = Field Blank Value/Method Reporting Limit.

Field Duplicates were evaluated based on absolute relative percent difference (RPD) using the following equation:

RPD= (Abs. Difference of Duplicate 1 minus Duplicate 2)/(Average of Duplicate 1 plus Duplicate 2)*100.

Duplicate values that were greater than five times the method reporting limit (MRL) with RPD values of 20-50% (Clark 2013) were inspected and values of greater than 25% were further considered as alerts on possible contamination or lack of representativeness. All internal quality control for laboratory methods and results provided by the labs were reviewed and evaluated.

The quality control information on the macroinvertebrate sorting and subsampling is presented in the technical report by Rhithron (section 10.2)

4 Data Analysis

4.1 Initial trends in physiochemistry

Water and sediment quality data were evaluated using a number of methods including: hierarchical cluster analysis of sediment and water quality, Stiff diagrams of water quality, and comparisons to applicable sediment and water quality guidelines.

Hierarchical cluster analysis (agglomerative hierarchical classification) using all water or sediment quality parameters combined were used to explore initial clustering of sites according to water and sediment quality. Euclidean distance and Ward's linkage method were applied (R Development Core Team. 2016). Clustering of sites was examined with untransformed and transformed (log(x+1)) in an initial inspection of the site data and to assess how sites were distributed across a range of constituents. Untransformed data was highly biased towards major ions, particularly calcium

concentrations and specific conductance. Average values were used to replace missing values for water sampled in 2014.

Richard Johnson of Opus Petroleum Engineering used Stiff diagrams, graphical representations of the ion concentrations (Stiff, H.A., 1951), to look at the composition of the water quality data collected in our project (Section 10.1). Opus plotted the ion concentrations, in milliequivalents, using a logarithmic scale, added an axis for Potassium and recorded nitrate levels for each site.

4.2 Stress gradient: Reduction of variables using PCA

We used principal components analysis (PCA) to reduce redundancy in the number of explanatory variables to create a stress gradient (R Development Core Team. 2016). PCA allowed us to identify blocks of correlated variables and reduce correlated variables which tend to skew an index in the direction of these variables (Falcone et al. 2010). At this point in our project with a sample size of 24, we used PCA in an exploratory manner in order to investigate potential relationships in the data.

Our initial data set consisted of 50 water quality parameters, 40 sediment quality parameters and 15 variables that reflected visual estimates of physical stress. Variables were ordinated in four categories including; water (n=14), sediment (n=11), physical (n=14), and chemical inputs in sediment and water (n=40). We ran a PCA on a cross-product matrix of correlation coefficients for each of these categories to produce new synthetic variables that are linear combinations of the original data (similar to Rooney and Bayley 2010). This was carried out to create new variables or synthetic variables that represented suites of our original variables that were functionally related, best explained the variance in the data and reduced the number of variables required to explain the observed variance. We then decided how many components from the PCA were significant based on two criteria; (1) the number of axes required to explain 80% of the variation, (2) use of the Kaiser-Guttmann criterion in computing the mean of all eigenvalues and including the axes that are larger than the mean (Borcard et al. 2011).

All PCA runs were based on transformed data using a correlation matrix which scales data prior to carrying out the PCA. Water and sediment chemistry variables were transformed by log(x+1) prior to running PCA. Percent physical stresses were transformed using the Ancombe's arcsine transformation prior to running PCA (Anscombe 1948, described in Zar 1984) given as asin(sqrt((value+3/8)/(100+3/4))). Univariate normality was tested using the Shapiro-Wilkes test for normality before and transformation on all variables.

Variable selection based on PCA of the water and sediment quality data was carried out independent of disturbance categories. Water quality at detection levels was replaced with values that were one half the detection limits. Missing values were replaced with average values for replicates within a wetland type. The concentration of metals in sediment was used as the main indicator of legacy mining because water chemistry typically has greater seasonal variability and because of missing values for water in 2014 when funding was limited.

Variable selection based on visual estimates of physical stress from the CABIN field sheet for wetlands (from Emily McIvor 2015) included percent disturbances of wetted area and margin of the wetlands due to cattle, farmyard, urban, roads, mining, total and percent canary reed grass. Visual estimates of disturbance were carried out by Rhia MacKenzie. Thus, rapid visual human disturbance gradient rankings and estimates of disturbance were carried out by separate individuals based on best professional judgement (BPJ). GIS variables will also be used to quantify population, roads and land cover for the final report. These variables have been recently completed by Ryan Durand and will be incorporated into the report for the NWCF due April 31. Rapid visual estimates of disturbance rankings were used for the purposes of this interim report.

We selected variables with the largest Eigen-value for each significant component to be representative of each component (Falcone et al. 2010, and Rooney and Bayley 2010). We then used correlation analysis to evaluate whether site scores on significant components from the PCA and representative variables (Table 1) showed a significant correlation with a simple visual ranking based on professional judgement for human activity (EPA 2002). All rankings for the rapid Human Disturbance Gradient were carried out by Darcie Quamme.

4.2.1 Variable standardization and weighting

Variables were standardized by both percentile binning and z-scoring methods. Percentile binning allows improved resolution at intermediate stressed sites and attenuates the influence of outliers relative to other methods that retain the distribution of values such as the z-scoring (reviewed in Falcone et al. 2010 and in Rooney and Bayley 2010). Many of the wetlands in the Slocan Valley are predicted to have moderate effects due to urbanization, development, farmlands and roads. However, most of the highly stressed sites were associated with legacy mining and can be considered extreme values. Contaminated sites will also be assessed relative to metals levels assessed using a number of techniques.

Z-transformation was performed on untransformed data in our initial exploration of the data. Percentile binning does not require transformation of the data because the calculation of percentiles is distribution-free (Rooney and Bayley 2010). However, non-parametric statistics are required to analyze stress scores because (1) percentile-binning tends to create a wide peak around the mean with thinner tails (platykurtic distribution) and (2) non-parametric statistics help to resolve tied scores using the average of the ranks that tied values would have received had they not been tied.

Individual variable scores were weighted, summed and rescaled to 100 after transformation. Weightings were of three types including: equal weighting by variable (score summed for all variables with equal weighting), weighting by percent variance from PC axis for each representative variable selected by PCA (scores weighted by % variance from PCA and then summed) and weighting by category including water, sediment, contaminant and physical stress (variables averaged for each category and summed).

4.2.2 Validation

Stress score methods were evaluated in a preliminary manner with respect to four statistical methods: (1) Spearman rank correlation among calculation methods, (2) Kruskall Wallis tests between contaminated sites and least impacted sites, (3) inferences of post-hoc pairwise comparisons using Kruskall-Wallis Nemenyi-test with tied Chi-squared approximation for independent samples, corrected for ties, (4) Akaike Information criteria on simple linear regression analysis of metals levels (not included in calculation of scores) versus the Stress score.

We used Spearman rank correlation coefficients to evaluate the correlation between the six combinations of standardization and weighting methods. In addition, non-parametric Kruskall-Wallis analysis was employed to discriminate among sites classified by Best Professional Judgement (PBJ) with a rapid Human Disturbance Gradient, HDG (EPA 2002). BPJ Categories corresponded to rapid Human Disturbance Scores of 0-24 (Low, n=13), 25-74 (Moderate, n=8) and 75-100 (High, n=3). The High category was comprised of three sites contaminated by legacy mining on the Seaton Creek wetland. Variables from PCA reduction independent of wetland HDG score. Thus, the quantitative Stress Score was evaluated with respect to how well the Stress score discriminated between contaminated (HDG=High) and reference sites (HDG=Low). Sites with Moderate stress were also included in the analysis. However, physical stresses impacted human activities from agriculture, development and roads will be better used to validate the Stress Index when GIS variables are available.

4.3 Index of Biotic Integrity for macroinvertebrates

4.3.1 Metric selection

The steps used to screen metrics for inclusion in the Index of Biotic Integrity are outlined below. Metrics were retained if:

- The metric had a significant relationship with wetland stress in analysis of covariance of metrics versus wetland stress.
- The metric showed low redundancy with other metrics as evaluated by Pearson's Correlation coefficient.
- The metric had the best fit with wetland stress relative to other redundant metrics (evaluated by r² value with wetland stress in least squares of macroinvertebrate metric versus wetland stress score).

We screened metric response to wetland stress using analysis of covariance, ANCOVA, (Milliken and Johnson 2002) in order to explore associations of the invertebrate metrics with stress score, wetland type, pH, and TOC. Of most interest was the relationship with stress score, however, we suspected there was potential covariance of stress score with wetland type, pH and TOC and therefore these predictor variables were also considered. ANCOVA was used to select metrics for inclusion in the Index of Biotic Integrity to consider whether other predictors beyond stress score influence response metrics and how these other predictors might covary with stress score.

Models were run using batch loops in program SAS with statistical significance determined by Wald Chi-Square tests, and type 3 tests which are less sensitive to predictor variable ordering. Count data was modelled using Poisson regression (SAS Institute 2000) (McCullough and Nelder 1989) with a log-link therefore accounting for likely relationship between the mean and variance of counts. Proportion data was transformed using Anscombe's arc-sin square root and modelled assuming a normal distribution. R-square values were generated using proc GLM in SAS. As an initial cut, variables with type 3 p-values of 0.05 or less were considered as candidate metrics from the analysis from the analysis of covariance.

A Pearson correlation table of candidate metrics was further evaluated for redundancy. Pairs of metrics with Pearson correlation coefficients ≥ 0.65 were then inspected and the metric with the higher adjusted r² value (better fit) in least squares regression in response to wetland stress was retained.

4.3.2 Index of Biotic Integrity

A preliminary version of the macroinvertebrate Index of Biotic integrity (IBI) was calculated based on a continuous scoring technique (Rooney and Bayley 2010) that assigned scores as a linear interpolation between the maximum and minimum values. However, our goal following the 2016 field season is to score the IBI relative to a subset reference values (Rooney and Bayley 2010) as sample size increases because Rooney and Bayley (2010) found that these scoring were correlated however that scoring the IBI relative to reference values may be more theoretically valid. In addition, we decided to use a continuous method of scoring rather than percentile binning because it has been shown to be potentially more sensitive (Blocksom 2003) or have no effect on IBI values (Rooney and Baily 2010).

5 Results

5.1 Quality Control

Overall the quality control and quality assurance program indicated a high level of field and analytical precision (Appendices 3-9).

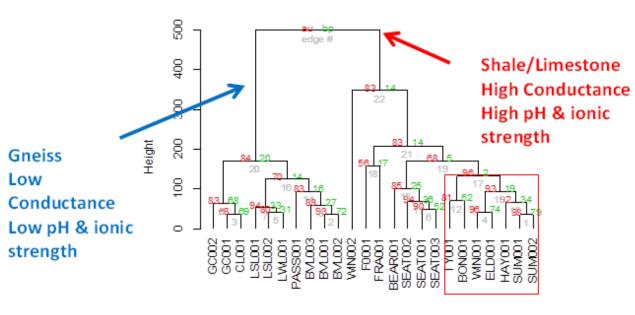
Two sets of duplicates collected on August 6, 2016 and analysed for alkalinity, total acidity, turbidity and specific conductance at Passmore laboratories were within the required RPD range of 20-50%. Forty-five of the fifty parameters analysed by Caro in a duplicate sample collected at SEAT003 on August 16, 2015 were below the RPD limit of 25%. Five of the fifty parameters exceeded an RPD limit of 25% in some cases because one of the values was near detection (see Appendix 9). Of these, only two parameters including total lead and total manganese in water exceeded the additional criteria that the difference between duplicates should be less than two times the method detection limit when duplicates are less than five times detection (Clark 2013).

Two field blanks collected on July 21 and August 6, 2016 and analysed for alkalinity, total acidity, turbidity and specific conductance at Passmore laboratories were less than two times the method detection limit for all parameters. Forty-four of the fifty parameters analysed from a Field Blank collected at Bonanza Creek Marsh (BON001) and analysed by CARO for a full scan of metals and basic water quality parameters were below detection. Six of the parameters were above detection including: Dissolved Organic Carbon, Ammonia, TKN, Total P, Total Dissolved P and Total Nitrogen. Of these, only Total and Dissolved Phosphorus were greater than two times the Method Detection Limit. As a result, the replicate samples that were collected at SEAT003 were closely inspected for Total and Dissolved Phosphorus. The difference between the duplicates was less than two times the Method Detection Limit for both parameters. This criterion was used because all values were below five times the Method Reporting Limit.

These analytical discrepancies did not interfere with the main results. Additional blanks and replicates will be used in 2016 in order to verify that there is no contamination during the sampling process.

The quality control and assurance data for macroinvertebrate identifications and subsampling is presented in a technical report by Rhithron in section 10.2.

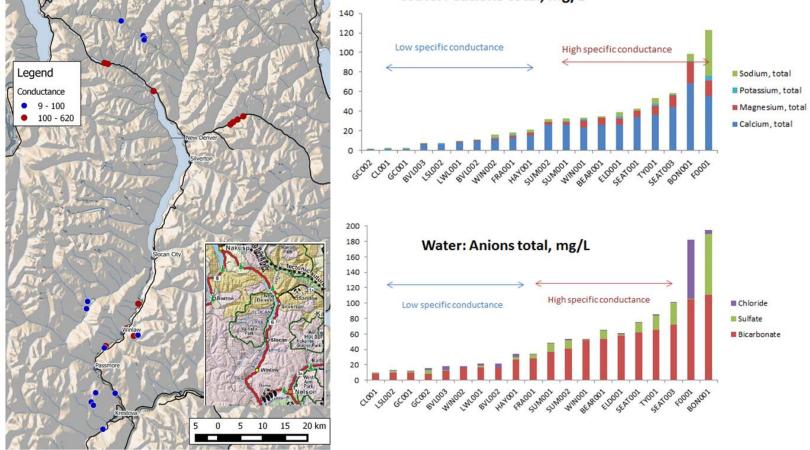
5.2 Preliminary trends in physiochemistry


5.2.1 Hierarchical cluster analysis

Results of hierarchical cluster analysis (agglomerative hierarchical classification) using forty-one water quality parameters (Euclidean distance and Ward's linkage method) showed two main clusters that corresponded to two types of bedrock including gneiss and shale/limestone underlying soils in the Slocan Watershed. Data runs on normalized, log transformed data in water showed a cluster pattern between the two types of geological formation with a cluster that was highly significantly different and included: BON001, TY001, SUM001, SUM001, ELD001 and HAY001 (Figure 3).

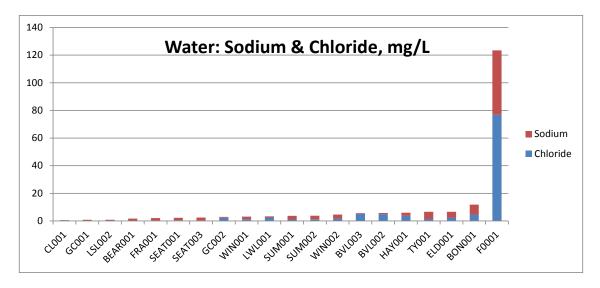
The bedrock in the Slocan watershed is mainly composed of igneous and metamorphic clastics. These rocks do not directly impact the water chemistry until they are weathered and form part of the soil and aquifers. Anomalous mineralization of bedrock is site specific and can, under certain conditions, impact water chemistry. Limestone bedrock in the Slocan watershed does affect the water chemistry directly. Wetland sites in ours study with shale/limestone bedrock tended to have higher ionic strength, conductivity and pH (Figure 4) due to greater weathering rates of constituent minerals.

Wetland sites were fairly evenly distributed between the two types of geological formations (Figure 4). Thus, the sampling design provided good coverage of the soil types, as well as north-south, eastwest and elevational gradients given the sample size (n=24). Additionally, one site that was


impounded by a railroad (near Fomi's Bakery) and located downslope from the highway had higher levels of sodium and chloride than all other sites (Figure 5).

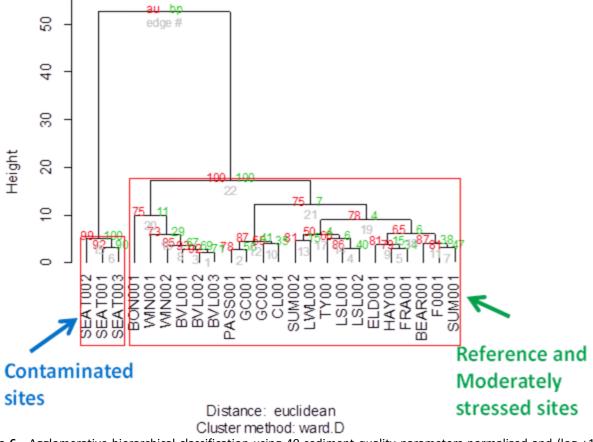
SWAMP wetlands

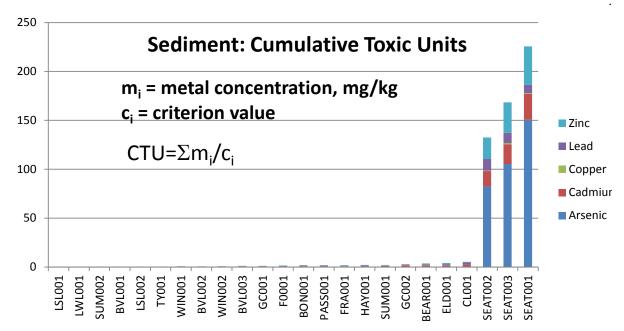
Distance: euclidean Cluster method: ward.D


Figure 3. Agglomerative hierarchical classification using 41 water quality parameters on normalized and log transformed variables. Euclidean distance and Ward's linkage method were applied. Clusters with high "Approximately Unbiased" values (AU in red), >0.95, are strongly supported by the data. BP (green) refers to raw "Bootstrap Probabilities" before statistical adjustments based on 1000 runs. Average values were used for missing data in 2014.

Water: Cations total, mg/L

Figure 4. Map of wetland sites coloured by specific conductance ranges 9-100 uS/sec (blue) and 100-620 uS/sec (red). Inset from Turner et al. (2009) indicates soils underlain by shale, limestone, till and glacial debris (beige/brown) and gneiss (pink). Graphs of concentrations (mg/L) of anion and cation forming parameters at each site as monitored from unfiltered water samples ordered by specific conductance.


INTEGRATED ECOLOGICAL RESEARCH


Figure 5. Sodium and chloride concentrations (mg/L) from unfiltered water samples. BC. Guidelines for chloride aquatic life (Nagpal et al 2003): 150 mg/L 30-day average, 600 mg/L Max, Natural waters in BC vary from 1 to 100 mg/L. Significant effect on amphibians: 200 mg/L (Sadowski 2005).

Results of hierarchical cluster analysis (agglomerative hierarchical classification) using forty sediment quality parameters (Euclidean distance and Ward's linkage method) showed two main clusters that corresponded to sites contaminated by legacy mining (Seaton Creek wetland) and all other sites (Figure 6). In addition, bar charts (Figures 7 and 8) indicate cumulative toxic units (CTU). CTUs represent the synergistic effect of contaminants on the biota and are calculated by the summing concentration of each metal divided by its guideline for each site.

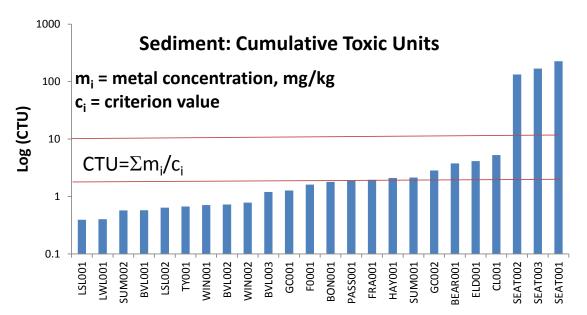

The contaminated sites were 168 to 225 times guidelines and greater than ten CTUs (using criteria based on Probable Effect Levels, PEL) for zinc, lead, arsenic, copper and cadmium indicating significant pollution (Clements et al 2000). Six other sites (Cooley Lake, Elder's wetland, Bear Lake outflow, Goose Creek fen, Summit Lake outflow, and Hay's wetland) had levels greater than two times criterion values above which metals levels may influence benthic community structure and cause mortality in sensitive species.

Figure 6. Agglomerative hierarchical classification using 40 sediment quality parameters normalized and (log +1 transformed). Euclidean distance and Ward's linkage method were applied. Clusters with high "Approximately Unbiased" values (AU in red), >0.95, are strongly supported by the data. BP (green) refers to raw "Bootstrap Probabilities" before statistical adjustments, 1000 runs.

Figure 7. Graph of cumulative toxic units of Zinc, Lead, Copper, Cadmium and Arsenic by parameter from sediment samples.

Figure 8. Graph of cumulative toxic unit of Zinc, Lead, Copper, Cadmium and Arsenic in sediment. Lines in red indicate (1) two times criterion values above which metals levels may influence benthic community structure and cause mortality in sensitive species and (2) ten times criterion value which is considered significantly polluted (Clements et al. 2000).

INTEGRATED ECOLOGICAL RESEARCH

5.2.2 Stiff Diagrams of water quality

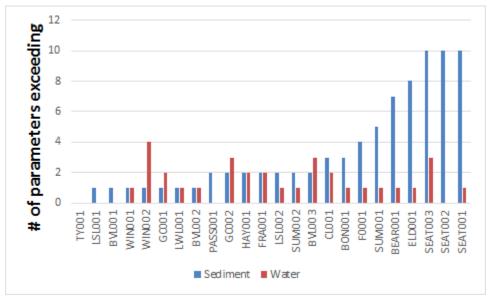
Stiff diagrams confirmed trends described above for each site. With increasing specific conductance and total dissolved solids (TDS), the shape of the Stiff diagram changed from a "diamond" into a "kite", with both shapes typical of surface water quality.

The variations in these shapes indicated contributions of solutes that may result from human activity. The sample F0001 (near Fomi's Bakery) showed human created contamination which may originate from surface run-off from the nearby residences, the rail to trail or the highway above the site.

The sample collected from Bonanza Marsh (BON001) displayed a high sulfate concentration when compared to the other samples in this study. Bonanza Marsh is fed by springs and streams flowing over fractured limestone bedrock. Although the sodium is present, the cation balancing the sulfate is probably calcium, indicating a gypsum or anhydrite source. This may from be normal dissolution of these minerals in the limestone, or may be man-made. One of the Seaton Creek sites (SEAT003) impacted by legacy mining effects also exhibited elevated sulfate levels. However, the Seaton Creek site (SEAT001) which had the highest levels of metals in sediment showed lower concentrations of sulfate and metals in water likely due to high groundwater inputs from the Bear Lake.

Nitrate concentrations in the Beaver Lake samples, BVL002 and BVL003 and Little Wilson Lake (LWL001) were slightly elevated compared to other sites in the Slocan Valley particularly given the underlying granitic bedrock formation. Initial inquiries found that forest fertilization took place in 1995 in the Little Wilson Lake area (pers. com George Edney). Further investigation into the exact location/blocks, concentration of fertilization treatments need to be tracked down and evaluated with regards to the potential for detection in 2015.

5.2.3 Comparison of water and sediment quality to guidelines


All water and sediment samples were reviewed in accordance to applicable provincial and federal guidelines (see Appendices 5 and 6 for summarized water and sediment guidelines). A number of sites were found in excess of the guidelines, the number of parameters exceeding guidelines per site is given in Figure 9. In water, sites varied from 0-4 exceedances of guidelines including: aluminum (total monitored not dissolved), Arsenic, Cobalt, Iron, Lead, Copper, and Zinc (Appendix 7).

Provincial and federal sediment quality guidelines for the protection of aquatic life were reviewed and of the thirty-seven sediment quality parameters monitored twelve parameters have associated guidelines including: arsenic, cadmium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, selenium, silver, mercury and zinc.

For sediment, 14 sites exceeded sediment guidelines for 0-2 parameters including: TY001, LSL001, BVL001, WIM001, WIN002, GC001, LWL001, BVL002, GC002, HAY001, LSL002, SUM002 and BVL003. Additionally, there were six sites not directly affected by legacy mining impacts that exceeded sediment guidelines for 3-8 parameters including CL001, BON001, F001, SUM001 and ELD001. The

three sites directly impacted by historical mining had exceedances of guidelines by 10 parameters (BEAR001, SEAT001, SEAT002 and SEAT003). While wetlands associated with the outflow of Bear Lake (BEAR001), likely affected by mining activities, exceeded guidelines for seven parameters monitored.

All sites affected by legacy mining were high in arsenic, cadmium, copper, iron, lead, manganese, nickel, silver, selenium and zinc. Similar to the water quality guideline review TY001 was the one site that did not exceed guidelines and mercury was the only metal that showed no exceedances at any site (Appendix 8).

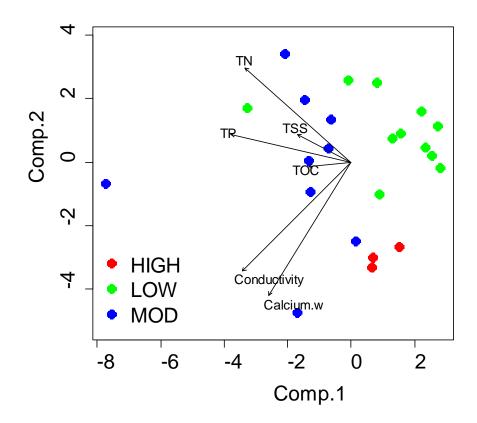
Figure 9. Number of parameters exceeding at least one guideline at each site for water and sediment. Four sites including SEAT002, PASS001, BVL001, LSL001 were not assessed (for water) in 2014 because of limited sampling relative to 2015.

5.3 Stress Gradient: Variable selection using principal components analysis.

5.3.1 Normality and transformation of data

All data was transformed prior to carrying out principle components analysis (PCA) using log(x+1) for continuous variables and Anscombe's arcsine square root transformation for percentages (Anscombe 1948, described in Zar 1984). Univariate normality was also tested using the Shapiro-Wilkes test for normality before and after transformation.

Log transformation improved normality for 43% of water and sediment parameters. Variables that were not improved with log transformation were explainable by the outliers in high levels of


chemical inputs at some of the sites and the small data set (n=24). These high values resulted in high skewness (>1.3, Zar 1984) to the right tail of the data for 22% of parameters.

Ancombe's arcsine transformation slightly improved normality for 78% of the physical parameters but none of the 14 variables met normality with transformation. The lack of normality was generally due to the small data set (n=24) and the fact that some disturbances were identified at only a few of the sites. For example, impacts due to cattle were present at only one site. This resulted in high skewness (absolute value >1.3, Zar 1984) for 22% of parameters and likely undue weight in the PCA. As a result, we included total disturbance (sum of the disturbance types) within the wetted area and within the margin of the wetland as variables within the PCA.

The use of PCA on a sparse data set is not ideal but we proceeded with PCA in an exploratory manner in order to assess potential candidate variables for developing a stress gradient while recognizing that more robust analyses will be carried out as sample size increases following the 2016 field season.

5.3.2 Water

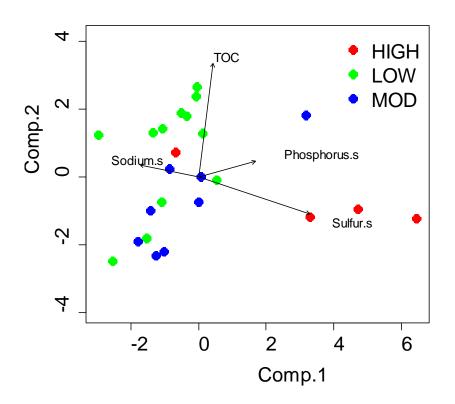
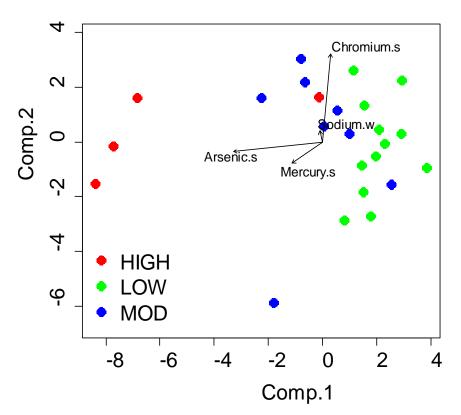

The first three axes cumulatively explained 82.3% of the total variance in the 14 basic water quality variables. Axis 1 (Figure 10) with an eigenvalue = 5.25 explained 38.9% of the variance and represented nutrient levels including Kjeldahl-N, total N, TP (absolute eigenvectors >0.3). We selected Total Nitrogen with the second largest eigenvalue (0.38) to represent this axis. Axis 2 (Figure 10) explained 30.2% of the variance with an eigenvalue of 3.5. Axis 2 represented the ionic strength of water including the concentration of total calcium, pH, hardness, and alkalinity. All of these parameters had eigenvectors greater than 0.3 and total calcium was selected to represent this axis with an eigenvector of 3.91. Axis 3 (Eigenvalue=1.83, eigenvectors >0.5) explained 13.1% of the variance and was represented by turbidity and TSS. Turbidity was selected to represent this axis with an eigenvector of 0.57.

Figure 10. Biplot of scores from Principle Component 2 versus Principle Component 2 on a correlation matrix of 14 parameters from water sampled at 24 sites. Sites are coloured according to ratings based on best professional judgement corresponding to rapid Human Disturbance Scores (EPA 2002) of 0-24 (Low, n=13), 25-74 (Moderate, n=8) and 75-100 (High, n=3). The High category also corresponded to three sites contaminated by legacy mining.

5.3.3 Sediment

The first three axes were significant and represented 83.7% percent of the overall variance. The first component (Figure 11) explained 43.8% of the variance (eigenvalue 4.7) and corresponded to sediment concentrations of sulphur, calcium, and aluminum (absolute eigenvectors >0.39) reflective of differences in the geology of the area and differences in weathering rates of underlying granitic or shale/limestone bedrock. The second axis (Figure 11) explained 22.5% of the variance (eigenvalue 2.1) was representative primarily of total organic carbon (eigenvector =0.56). The third axis (eigenvalue 1.7) explained 17% of the variance was indicative of phosphorus in sediment (eigenvector=0.58).

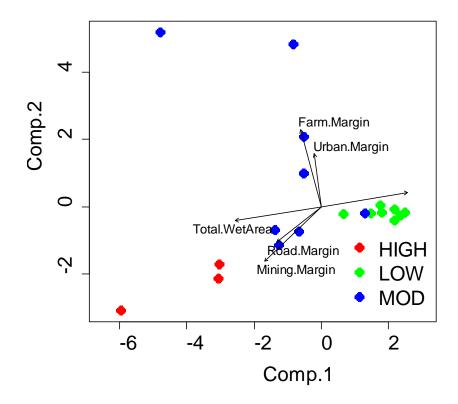

Figure 11. Biplot of scores from Principle Component 2 versus Principle Component 2 on a correlation matrix of 11 parameters from sediment sampled at 24 sites. Sites are coloured according to ratings based on best professional judgement corresponding to rapid Human Disturbance Scores (EPA 2002) of 0-24 (Low, n=13), 25-74 (Moderate, n=8) and 75-100 (High, n=3). The High category also corresponded to three sites contaminated by legacy mining.

5.3.4 Chemical inputs

Chemical inputs included 40 variables including 4 water quality variables (chloride, nitrate and sulfate) and 38 variables from the metals scan carried out on sediment. The metals in sediment were used as the main indicator of chemical inputs because metals in in sediments were higher in value and less susceptible to seasonal fluctuations.

Again, given that this year's work was an exploration of the data we retained principle components that explanation approximately 80% of the variance in order to include a variety of possible contaminants including sodium chloride which showed a weak gradient due to sparse data. Rooney et al. (2010) recommends selecting principle components that explain 60% of the variance in order to reduce redundancy and blocks of contaminants that covary. However, we were concerned that sodium chloride varied along an independent gradient to metals concentration. Given that the present work is an exploratory analysis, we decided to retain principle components that explained

80% of the variance to include sodium and chloride. The first five axes explained 79.7% of the variance. The first component (Figure 12) explained 43.5% of the variance (eigenvalue=10.5) and could be represented by arsenic concentrations in sediment (eigenvector=0.295). This component serves an indicator of metals from legacy mining including: arsenic, cadmium, copper, iron, lead, manganese, nickel, silver, selenium and zinc (Appendix 8). The second component (Figure 12) explained 16.8% of the variance (eigenvalue=3.05) and was represented by chromium in sediment (eigenvector=0.46). The third component explained 11% of the variance (eigenvalue=2.21) and was indicative of mercury in sediment (eigenvector=0.49). However, chromium and mercury indicators of the 2nd and 3rd principal components never exceeded guidelines in sediment. Reference and moderately impacted sites exceeded guidelines in sediment for 0-8 parameters. Six sites in particular exceeded sediment guidelines for 3-8 parameters including CL001 (Cd, Pb, Zn), BON001 (Cd, Pb, Se), F0001 (Cd, Ni, Pb, Se), SUM001 (As, Cd, Ni, Se, Zn) and ELD001 (Ag, Cd, Cr, Cu, Fe, Ni, Pb, Zn), Appendix 8. The fourth component explained 8.4% (eigenvalue=2.12) and corresponded to sodium (eigenvector=0.58) and chloride (eigenvector=0.39) in water.


Figure 12. Biplot of scores from Principle Component 2 versus Principle Component 2 on a correlation matrix of 11 contaminants sampled at 24 sites. Sites are coloured according to ratings based on best professional judgement corresponding to rapid Human Disturbance Scores (EPA 2002) of 0-24 (Low, n=13), 25-74 (Moderate, n=8) and 75-100 (High, n=3). The High category also corresponded to three sites contaminated by legacy mining.

INTEGRATED ECOLOGICAL RESEARCH

5.3.5 Physical stress

The first four axes cumulatively explained 87.2% of the total variance in 15 variables of visual estimates of physical disturbance to the wetted area and margin of the wetland including percent Phalaris sp. (canary reed grass) within the 5x5m quadrat. Axis 1 (Figure 13) with an eigenvalue = 5.44 explained 36.3% of the variance and represented total disturbance to the wetted area and margin and percent disturbance to the margin due to mining (absolute eigenvectors >0.39). Total disturbance to the wetted area had the highest absolute eigenvector 0.397 with total disturbance to the margin (eigenvector=0.394). Axis 2 (Figure 13) explained 21.3% of the variance with an eigenvalue of 3.20. Axis 2 represented the percentage of canary reed grass and percent farm yard, mining, urban disturbances to the wetland margin and roads near the wetted area. All of these parameters had absolute eigenvectors greater than 0.3 and % farmyard at the margin of the wetland had the highest absolute eigenvector (0.449) while percent canary reed grass had the second highest eigenvector (0.407). Axis 3 (eigenvalue=2.42, eigenvectors >0.423) explained 16.1% of the variance and was represented by percent urban disturbance, percent disturbance due to grazing in the wetted area and margin of the wetland and percent roads on the margin of the wetland. Percent urban disturbance to the margin of the wetland had the highest absolute eigenvector (0.449). Axis 4 (eigenvalue=2.01) explained 13.4% of the variance with disturbance to the wetted area and margin due to filling with absolute eigenvectors of 0.561.

The total disturbance to the margin of the wetland was selected to represent the sum of physical stresses including the first component because: (1) total disturbance was associated with the PCA component that explained the most variance (2) it was the variable that best approached normality (Shapiro-Wilkes test, p=0.02), (3) skewness was less than 1.3, and (4) other disturbances were incorporated into this measure with the exception of percent canary reed grass. In the future, variables with numerous zeros will be excluded from the PCA.

Figure 13. Biplot of disturbance scores to wetted area and margin from Principle Component 2 versus Principle Component 2 on a correlation matrix of 14 parameters sampled at 24 sites. Sites are coloured according to ratings based on best professional judgement corresponding to rapid Human Disturbance Scores (EPA 2002) of 0-24 (Low, n=13), 25-74 (Moderate, n=8) and 75-100 (High, n=3). The High category also corresponded to three sites contaminated by legacy mining.

5.3.6 Variable selection

Eleven variables representing the eleven principle components and explaining 80% of the variance from four categories (water, sediment, contaminants, and physical stress) were selected for inclusion in the stress gradient including: (1) Total Nitrogen, Total Calcium and Turbidity from water, Sulfur, (2) Total Organic Carbon and Total Phosphorus in sediment, (3) Arsenic, Chromium and Mercury (sediment) and sodium (water) as contaminants and (4) total disturbance to the margin of the wetland as physical stress. PCA was used to minimize the redundancy within the Stress scores although it is likely not possible to eliminate these correlations. Of 110 paired comparisons, 87% (95 pairs) of correlation coefficients from the Spearman rank test were less than 0.6 (rho<0.6, Figure 14).

Results of the Spearman rank correlation of these variables with a rapid Human Disturbance Gradient score (EPA 2002, Table 1) showed that Calcium and PC2 in water, PC1 and PC2 in sediment,

INTEGRATED ECOLOGICAL RESEARCH

PC1 and Arsenic from contaminants, and PC1 and total disturbance were significantly correlated with the Human Disturbance Gradient score p<0.05 (unadjusted for multiple comparisons).

However, more importantly least squares regression of all candidate variables versus human disturbance scores (HDG) was carried out for each parameter and residuals were scrutinized for correlations with the human disturbance gradient in order to assess correlated error with increasing wetland stress. There were no significant regressions of the residuals of candidate variables versus the human disturbance gradient. However, parameters that were indicators of legacy mining were highly skewed and residuals will be better analysed in greater detail with further data.

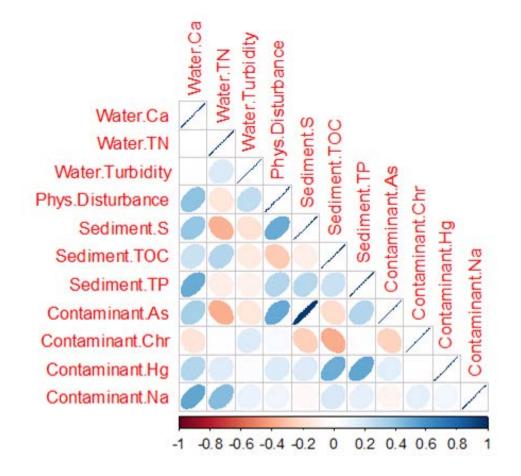


Figure 14. Correlogram of variables used to calculate Stress Index Scores (Spearman rank coefficients).

Stress Category	PCA component & representative variables	Correlation Coefficient	Unadjusted Probability	Adjusted Probability multiple comparisons
Water	PC 1	-0.28	0.19	1.00
	Total Nitrogen	-0.21	0.32	1.00
	PC2	-0.55	0.01	0.39
	Calcium	0.74	0	0
	PC3	0.27	0.20	1.00
	Turbidity	0.16	0.47	1.00
Sediment	PC1	0.44	0.03	0.44
	Sulfur	0.34	0.11	1.00
	PC2	-0.5	0.01	-0.50
	тос	-0.31	0.14	1.00
	PC 3	-0.16	0.44	-0.16
	ТР	0.29	0.16	1.00
Contaminant	PC1	-0.71	0	-0.71
	Arsenic	0.61	0	0.13
	PC2	0.26	0.23	0.26
	Chromium	0.13	0.55	1.00
	PC3	-0.06	0.77	1.00
	Mercury	0.25	0.24	1.00
	PC4	0.25	0.24	0.25
	Sodium	0.53	0.01	0.61
Physical	PC 1	-0.83	0	0
(visual estimate)	Total Disturbance to margin of wetland (100 m from site)	0.78	0	0
	PC3	-0.28	0.18	-0.28
	%Canary Reed Grass	0.42	0.04	1.00

 Table 1: Spearman rank correlation coefficient matrix for the four categories of variables. Probabilities

 were adjusted using Holme (1979) for multiple comparisons.

Principle Component Scores (PC) and representative variables as dependent variables versus a rapid Human Disturbance Gradient as the independent variable (EPA 2002).

5.4 Weighting and Standardization

There was positive correlation between the six methods of developing the stress scores (Table 2). Stress scores showed high concurrence both between standardization techniques (r>0.94-0.97) and weighting techniques (r>0.95-0.9).

A significant difference between sums of ranks of scores was observed for all Stress Score calculation methods (p<0.008, Table 3). Post-hoc pairwise comparisons with the Kruskall-Wallis Nemenyi-test with tied Chi-squared approximation for independent samples, corrected for ties, demonstrated that all of the scoring methods show significant differences between contaminated sites (High disturbance category, HDG>75) and reference sites including: weighting by variable, principle component variance and category for both percentile binning and z-score standardization methods (Table 4). These same indices were able to distinguish between sites with moderate stress and reference sites. No scoring method was able to discern between High and Moderate effects according to the non-parametric tests.

Table 2: Spearman rank correlation coefficient matrix of PCA data reduction and six methods of calculation of stress scores. Probabilities were significant at <0.001 for all pairs using the adjusted Holme (1979) for multiple comparisons (n=24).

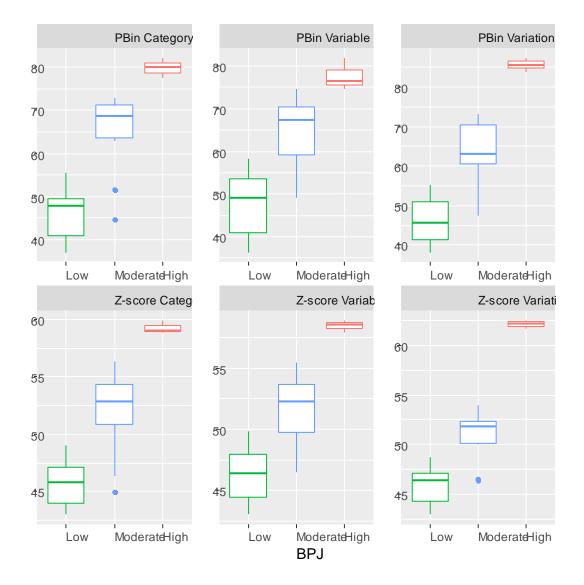
Transformation & Weighting methods	PB Variable	PB PC variance	PB Category	Z-score Variable	Z-score PC variance	Z-score Category
PB by Variable	1	0.96	0.96	0.96	0.95	0.91
PB by PC variance		1	0.94	0.91	0.92	0.89
PB by Category			1	0.92	0.92	0.94
Z-score by Variable				1	0.97	0.96
Z-score by PC variance					1	0.96
Z-score by Category						1

PB=Percentile binning, z-score=z-score transformation, Variable=equal weighting by variable, PC variance = weighting by PC variance and variable, Category = weighting by average stress category.

Table 3: Kruskall-Wallis rank score test of Stress Score calculation method by Disturbance Category (High, Moderate or Low HDG scores), n=24.

Stress Score calculation method	Chi-squared statistic	p-value
PB by Variable	15.0	0.0005*
PB by PC variance	15.9	0.0003*
PB by Category	15.6	0.0004*
Z-score by Variable	15.0	0.0005*
Z-score by PC variance	16.0	0.0003*
Z-score by Category	14.9	0.0005*

PB=Percentile binning, Z-score=z-score transformation, Variable=equal weighting by variable, PC variance = weighting by PC variance and variable, Category = weighting by average stress category. *Significant with the Bonferonni correction p=0.008)


Table 4: Test statistic and inferences of post-hoc pairwise comparisons using Kruskall-Wallis Nemenyi-test
with tied Chi-squared approximation for independent samples, corrected for ties, n=24.

Stress Score calculation method	High vs Low	High vs Moderate	Moderate vs Low	Inference
PB by Variable	0.003	0.288	0.022	High=Mod>Low
PB by PC variance	0.002	0.292	0.015	High=Mod>Low
PB by Category	0.002	0.282	0.022	High=Mod>Low
Z-score by Variable	0.003	0.255	0.029	High=Mod>Low
Z-score by PC variance	0.002	0.263	0.025	High=Mod>Low
Z-score by Category	0.002	0.264	0.025	High=Mod>Low

PB=Percentile binning, Z-score=z-score transformation, Variable=equal weighting by variable, PC variance = weighting by PC variance and variable, Category = weighting by average stress category.

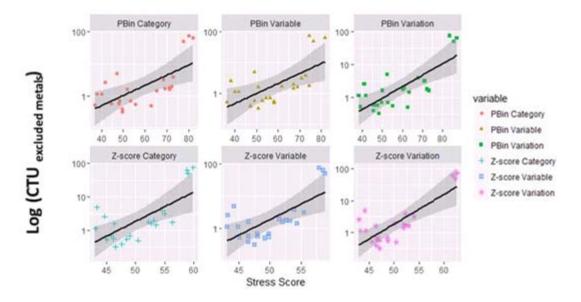
Boxplots also confirmed (Figure 15) that all of the scoring methods show good separation between disturbance categories for all calculation methods as evaluated by the lack of overlap between the 25th and 75th percentiles (Table 5). Low sample size as well as unequal sample size likely affected the power of the analysis to detect the trend between high and moderate in making inferences of posthoc pairwise comparisons using Kruskall-Wallis Nemenyi-test with tied Chi-squared approximation

for independent samples, corrected for ties. Particularly, because the high disturbance categories were comprised of only three sites and non-parametric methods have low power to detect differences at low sample sizes.

Figure 15. Boxplots of calculated Stress Index Scores by High, Moderate or Low categories of disturbance (EPA 2002) for each of six calculation methods including Percentile binning (PBin), or Z-score transformation, and three weighting schemes (Category = weighting by average stress category, Variable=equal weighting by variable, and Variation = weighting by PC variance). Best Professional Judgement Categories (PBJ) corresponded to rapid Human Disturbance Scores of 0-24 (Low, n=13), 25-74 (Moderate, n=8) and 75-100 (High, n=3). The High category also corresponded to three sites contaminated by legacy mining.

Regression statistics and Akaike information Criteria (Akaike 1974, Figure 16) of the log of metal concentrations (not included in score calculation) were used to evaluate stress scoring methods with respect to discriminate wetland metals levels. This assessment suggested that percentile binning

INTEGRATED ECOLOGICAL RESEARCH


with weighting by principle component scores, z-score transformation methods with weighting by principle component scores or category may be the best models because they had the lowest AIC value (66.82-73.63), highest r^2 (0.433-0.57) and significant p-values (<0.001) to explain stress due to metals (Table 5).

In our examination of macroinvertebrate metric response to wetland stress, we decided to use percentile binning with weighting by principle component scores (see map Figure 17) as a balance between using percentile binning to emphasize moderate impacts to wetlands (Falcone et al. 2010) and weighting by the main indicators of stress identified in principal component analyses which tended to separate sites contaminated by metals. However, all schemes were highly correlated and showed good separation between low and high categories of disturbance scores (Figure 15).

Table 5: Regression statistics of excluded metals (CTU excluded metals) versus Stress score calculati	on
method, n=24.	

Stress Score calculation method	Equation	p-value	Adjusted r ²	AIC criteria
PB by Variable	Log(Excluded metals)= 0.06*(score)-2.06864	<0.001*	0.37	78.79
PB by PC variance	Log(Excluded metals)=-2.3*(score)+ 0.06	<0.001*	0.57	73.04
PB by Category	Log(Excluded metals)= 0.06*(score) -1.97964	<0.001*	0.41	76.40
Z-score by Variable	Log(Excluded metals)= 0.17*(score) -7.38	<0.001*	0.46	76.24
Z-score by PC variance	Log(Excluded metals)=0.18*(score)-7.80	<0.001*	0.43	66.82
Z-score by Category	Log(Excluded metals)= 0.16*(score)-6.6	<0.001*	0.48	73.63

PB=Percentile binning, Z-score=z-score transformation, Variable=equal weighting by variable, PC variance = weighting by PC variance and variable, Category = weighting by average stress category. *Significant with the Bonferonni correction p=0.008). Excluded Metals = Cumulative Toxic Units for zinc, lead, copper and cadmium in sediment.

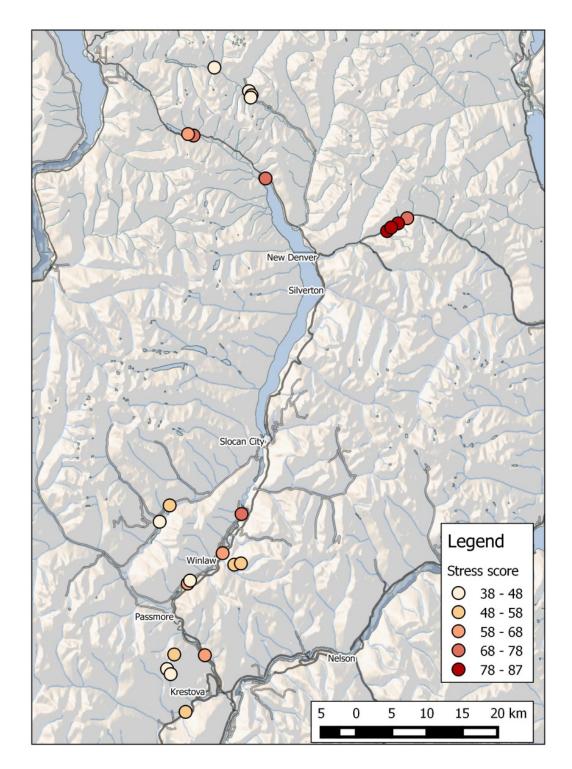


Figure 16. Regression of the Log of cumulative toxic metals (mg/L) excluded from the development of the index versus Stress Index by scoring method including Percentile binning (PBin), or Z-score transformation, and three weighting schemes (Category = weighting by average stress category, Variable=equal weighting by variable, and Variation = weighting by PC variance). CTU _{excluded metals} was calculated from the sum of the concentration divided by respective criterion for zinc, lead, copper and cadmium in sediment.

6 Macroinvertebrate metric selection

In initial testing of metric selection process, ninety-one metrics were examined for significance in an analysis of covariance that included wetland stress scores for wetland associations with Lacustrine, Palustrine, Riverine and Floodplain habitats, including varying levels pH and total organic carbon from sediment samples (TOC) (raw data and full results in Appendices 11-12). The fourteen metrics that showed a significant result for wetland stress were then assessed for redundancy (Table 6). Six metrics were rejected because they showed a high degree of correlation (Pearson's correlation coefficient of $r \ge 0.65$). The metric in correlated pairs with the poorer fit with wetland stress score (as indicated by r2 value in simple linear regression) was discarded. Eight metrics were relationship to wetland stress (Table 7).

All metrics that were retained had significant scores with wetland stress in analysis of covariance including: Simpson's Diversity Index, percent *Callibaetis sp.*, the number of Clitellata taxa, % Abundance collector-gatherers Number of intolerant taxa, % Diversity of amphipods to (amphipods + bivalves + gastropods). But only three metrics had significant p-values in simple linear regression with wetland stress including: Simpson's Diversity Index, percent *Callibaetis sp.* and the number of Clitellata taxa (Table 8).

Figure 17. Map of wetland sites coloured by wetland stress score using the percentile binning and weighting by principle component scheme (PBIN variance).

Table 6 Pearson's correlation coefficients among metrics that showed significant response to Wetland Stress (p<0.05) in ANCOVA. If pairs of metrics had absolute values rho. \geq 0.63 then the metric with the highest r² value in simple linear regression analyses with wetland stress was retained for use in the IBI.

	1			-			-								
Metric	Name	DIV_Simpsons	NT_Clitella	PA_1Dom	PA_3Dom	PA_5Dom	PA_Callibaetis	PA_E	PA_ET0	PA_Non_insect	PD_BCG	PA_CG	NT_HBIS	PD_Amph_BCG	PD_CFCG
DIV_Simpsons**	Simpson's Diversity Index	1													
NT_Clitella**	Number of Clitellata taxa	0.353	1												
PA_1Dom	% Dominant taxa	-0.9726	-0.3602	1											
PA_3Dom	% Top 3 dominant taxa	-0.9048	-0.4283	0.8879											
PA_5Dom	% Top 5 dominant taxa	-0.88	-0.4116	0.8666	0.99	1									
PA_Callibaetis**	% Callibaetis	-0.6259	-0.1196	0.5852	0.4365	0.3859	1								
PA_E	% Mayflies	-0.513	-0.0834	0.4688	0.3617	0.297	0.9237	1							
PA_ETO	% Mayflies, caddisflies & dragonflies	-0.4281	-0.1277	0.4058	0.3159	0.2628	0.8421	0.9251	1						
PA_Non_insect	% non-insect	0.435	0.1461	-0.4329	-0.3607	-0.3267	-0.3651	-0.3471	-0.3788	1					
PD_BCG	% Diversity of bivalves, amphipods & gastropods	0.3318	-0.1062	-0.3325	-0.239	-0.2528	-0.4207	-0.3591	-0.2875	0.7257	1				
PA_CG**	% Abundance collector-gatherers	-0.4058	-0.0209	0.353	0.2982	0.2241	0.5627	0.6367	0.5709	-0.3848	-0.0963	1			
NT_HBIS**	Number of intolerant taxa	0.5235	0.4549	-0.5063	-0.5015	-0.5009	-0.1809	-0.0348	-0.0736	0.4567	0.2775	-0.0853	1		
PD_Amph_BCG**	% Diversity of amphipods to (amphipods + bivalves + gastropods)	0.263	0.4589	-0.1745	-0.2123	-0.2201	-0.1661	-0.0426	-0.0659	-0.0071	-0.0149	0.0121	0.3504	1	
PD_CFCG	% Diversity of Collector filterers + Collector Gatherer	-0.5123	-0.0462	0.4762	0.4171	0.4799	0.2823	0.1529	0.1646	-0.2635	-0.3067	0.2041	-0.3239	-0.1093	1

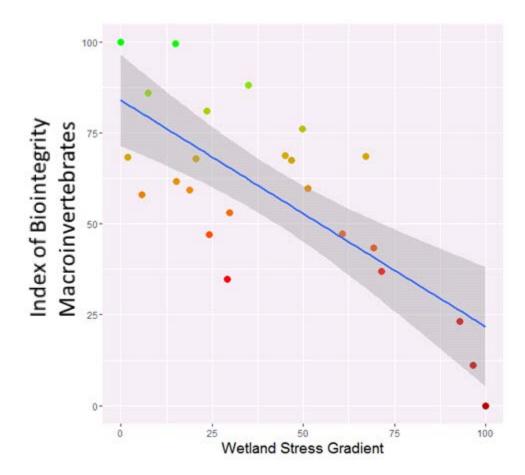
DIV=Diversity index, PA=Percent abundance, NT=No. of Taxa, **Values in green indicate that the metric was retained. Values in red are pairs of metrics that have a correlation coefficient >0.65 were redundant. Percent data was transformed with Anscombe's arcsin square-root and count data was transformed using Ln(x+1).

Table 7: Candidate macroinvertebrate metrics with significant p-values from ANCOVA of metric versus wetland stress score (PBvar), pH, TOC and wetland type (see Appendix 12 for full results).

Metric	Parameter	Level1	Estimate	StdErr	ChiSquare	p-value
candidate						
DIV_Simpsons	Stress_score		-0.0114	0.0034	9.3523	0.00223
NT_Clitella	Stress_score		-0.027	0.0105	6.7547	0.00935
NT_HBIS	Stress_score		-0.0239	0.012	4.0721	0.0436
PA_Callibaetis	Stress_score		0.0005	0.0001	14.052	0.00018
PA_CG	Stress_score		0.0004	0.0001	6.6555	0.00988
PD_Amph_BCG	Stress_score		-0.0003	0.0002	3.0172	0.08239
PA_CG	рН		-0.0145	0.0043	9.2704	0.00233
PD_Amph_BCG	рН		0.013	0.0047	6.7214	0.00953
NT_Clitella	ТОС		-0.0282	0.0161	3.5844	0.05833
PA_CG	тос		-0.0004	0.0002	5.3554	0.02066
PA_Callibaetis	Туре	Floodplain	-0.005	0.0038	8.7531	0.03276
		Lacustrine	-0.0106	0.0033	8.7531	0.03276
		Palustrine	-0.0066	0.0042	8.7531	0.03276
		Riverine	0	0	8.7531	0.03276
PD_Amph_BCG	Туре	Floodplain	-0.0037	0.0053	13.7621	0.00325
		Lacustrine	0.0094	0.0046	13.7621	0.00325
		Palustrine	-0.014	0.0058	13.7621	0.00325
		Riverine	0	0	13.7621	0.00325

PA=Percent abundance, NT=No. of Taxa, Percent data was transformed with Anscombe's arcsin square-root, Count data transformed using Ln(x+1).

Table 8: Least-squares regression statistics of macroinvertebrate metric candidates versus wetland S	tress
score (PBVar).	


Metric candidate	Parameter	Estimate	StdErr	ChiSq	p-value	R-Square
DIV_Simpsons	Stress_score	-0.0079	0.0027	7.2529	0.00708	0.260814
PA_Callibaetis	Stress_score	0.0005	0.0001	14.9195	0.00011	0.46294
NT_Clitella	Stress_score	-0.0183	0.0086	4.8348	0.02789	0.147472
PA_CG	Stress_score	0.0003	0.0002	2.3835	0.12263	0.094538
NT_HBIS	Stress_score	-0.0119	0.0094	1.6646	0.19698	0.039942
PA_Amphipod	Stress_score	0.0001	0.0002	0.25	0.6183	0.010290

PA=Percent abundance, NT=No. of Taxa, Percent data was transformed with Anscombe's arcsin square-root, Count data transformed using Ln(x+1).

6.1 Index of Biotic Integrity based on macroinvertebrates

A preliminary version of the macroinvertebrate Index of Biotic integrity (IBI) was calculated based on a continuous scoring that assigned scores as a linear interpolation between the maximum and minimum values (Figure 18). Rooney and Bayley 2010 suggest scoring the IBI relative the reference values makes most theoretical sense although cites that . However, because of low sample size we decided to start with an inspection of potential IBI values using the former method. We also decided to use a continuous method of scoring rather than percentile binning because it has been shown to be potentially more sensitive (Blocksom 2003) or have no effect on IBI values (Rooney and Baily 2010).

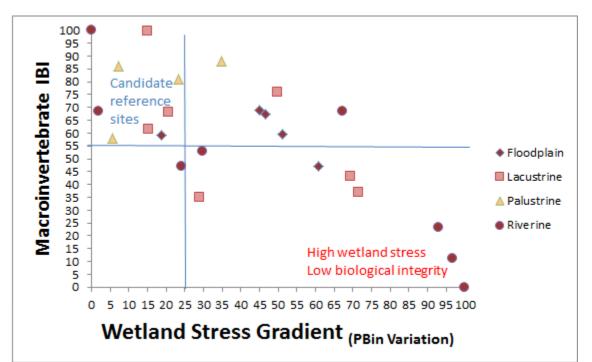

The Index of Biotic Integrity for macroinvertebrates showed a significant decline with increasing wetland stress. (y=0.6228x +16.0164, p<0.001, adjusted $r^2=0.53$, F=27.01). Confounding factors such as such as latitude, longitude, elevation, year and type of wetland (Lacustrine, Palustrine, Riverine and Floodplain) were nonsignificant when added as predictors in multiple regression or analysis of covariance. Furthermore, the residuals of the Index of Biotic Integrity were uncorrelated with increasing wetland stress.

Figure 18. Index of Biotic Integrity (IBI) based on macroinvertebrates versus a quantitative wetland stress gradient (percentile binning and weighting by principal components scheme) y=0.6228x + 16.0164, p<0.001, adjusted $r^2=0.53$, F=27.01. The colour of the points is correlated with the y value (IBI).

Potential candidate reference sites were identified if a site was in the lower 25th percentile of scores for wetland stress and if the IBI index was great that one standard deviation above the mean IBI value for sites with wetland stress scores in the lower 25th percentile (Figure 19). Several sites were identified that had high wetland stress and low biological integrity including Riverine, Floodplain and Lacustrine sites.

Riverine associated wetlands had the longest gradient in wetland stress (0-100) and showed the strongest response in IBI values (0-100). Lacustrine wetland habitats had a wetland stress gradient that ranged from 15.3-71.5 and a range of IBI values of 37-99.6. Palustrine sites were under sampled but tended have low to moderate values in wetland stress (5.6-35.8) and IBI (57.9-88.0). In addition, floodplain sites were distributed over a limited gradient in wetland stress (18.8-60.7) with intermediate range of biological health as indicated by the IBI values (47.3-60.9).

Figure 19. Index of Biotic Integrity (IBI) based on macroinvertebrates versus a quantitative wetland stress gradient (percentile binning and weighting by principal components scheme) by type of wetland type (Floodplain, Lacustrine, Palustrine and Riverine), graph similar to Bayley et al. (2014).

7 Conclusions

We developed quantitative tools to rate wetland stress and biotic integrity that can be used to assess wetlands in the Slocan Watershed to make management decisions about restoration and conservation. We identified an initial list of candidate sites that are low in wetland stress and high in biological integrity that are best-case scenario reference. Establishment of reference conditions for wetland and riparian areas was identified in the Fish and Wildlife Conservation Program

Columbia Basin Riparian Wetland Action Plan as one of the highest priorities for the Slocan Valley for conservation and management planning. Our work addresses this priority in a quantitative and scientifically valid method.

Five macroinvertebrate metrics were selected as indicators of wetland stress across a range of wetland types. An Index of Biotic Integrity for macroinvertebrates calculated from these indicator metrics showed a strong significant response to increasing wetland stress. However, higher sample sizes are required for further testing, and validation.

Stress gradient scores were effective at separating highly (contaminated sites) and moderately stressed sites from reference sites using all scoring methods. Assessment of Stress Scores by calculation method suggested that percentile binning with weighting by principle component scores, and z-score transformation methods with weighting by principle component scores or category may be the best methods for wetlands with gradients in metals levels. We evaluated how scoring methods including transformation and weighting choices influenced the performance of the stress gradient. We minimized best professional judgement and described clearly when and how it was used.

Next steps and future work will include:

- Stress Gradient:
 - Further sampling of sites by habitat types and over longer stress gradients where needed.
 - GIS assessment of land cover within a 500m buffer zone around each wetland site has been completed by Ryan Durand (Appendix 1). Stress gradient performance will be evaluated using this land cover and population-based GIS variables.
 - Further testing of the scoring methods associated with the stress gradient will include an assessment of the independence of residuals of each metric in the stress score and human disturbance.
 - Recommendations on selection of indicators to reduce the cost of water quality sampling.
- Index of Biotic Integrity based on macroinvertebrates.
 - Further testing of scoring methods will be carried out as sample size increases across wetland types and increasing wetland gradient.
 - Potential use of non-linear macroinvertebrate metrics using piecewise quantile regression using methods in Rooney and Bayley (2012).
 - More stringent selection process for reference sites with increased sample size (Bayley et al. 2014, Yates and Bailey 2010a and 2010b).
 - Cross-validation (across wetland type and time) using training and hold-out data sets.
 - o Further evaluation of the Index of Biotic Integrity in 2016/17 with an increased number of sites.

- Further work on correlations with quadrat and larger-scale assessments of plant composition collected from SWAMP Phase 3.
- Index of Biotic Integrity-based management actions
 - A list of priority actions for restoration and conservation will continue to be developed (See Appendix 13 for an initial list of IBI-based evaluation of restoration and conservation sites).
 - The SWAMP scientific team, supporters and community members will be surveyed as to priorities for restoration and conservation with regards to the growing information on wetlands in the Slocan Valley.

This document provides an outline of methodologies for the first stages in developing an index of biotic integrity based on wetland invertebrates as part of the SWAMP project. Further development and research will aid in the optimization of this methodology to the SWAMP program.

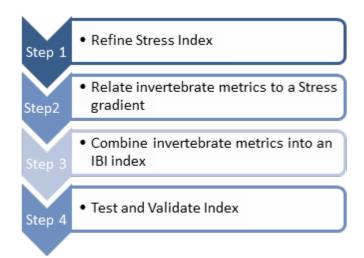


Figure 2. Next steps in developing an Index of Biotic Integrity for Macroinvertebrates for wetlands

7.1 2016 Field season planning

As described above, this project has received technical guidance from Environment Canada, CABIN, funding from the National Wetland Conservation Fund and the Fish and Wildlife Compensation Fund and dovetails with other SWAMP projects (Phases 1-3 and Summit to Bonanza Marsh Corridor). Rebecca Rooney of the University of Waterloo has also agreed to provide technical advice to the project which in turn may lead to further collaboration with the university.

The long-term goal of SWAMP is to sample at least five classes of wetlands and 8-10 sites/class in order to make use of multivariate statistics. Thus, the invertebrate protocols will be developed in a

multi-year context funded in an additive approach within the three years. The exact number of sites will be driven by the number of community types and the ability to determine within and between site variability. A recent top-up of funding up to 33% of original funding (Oct, 2015) from the National Wetland Conservation Fund and likely renewal for the 2016 field season demonstrates their support for the project at a Federal level and the potential of our project to raise and leverage funds. The Columbia Basin Trust has approved funding for the 2016 field season. The Winlaw Watershed Committee has also recently expressed interest in providing funding to the project.

For the 2016 field season, wetlands identified by Durand (2015) in the Phase III mapping and field assessments will be evaluated for potential candidate sites for the invertebrate project in 2016. This will be done largely in close collaboration with Ryan Durand and other SWAMP team members. In addition, at least one potential restoration site (Slocan River Streamkeepers Society, Spankie Crooked Horn Farm Project) will be sampled in the 2016 with monitoring pre and post with reference conditions established by other lower valley sites for comparison. Furthermore, our sampling may address community concerns around mosquito issues.

The Royal BC Museum has agreed to house the voucher/reference collection from the project. Taxonomic identifications by Rhithron meet the museum's specifications for quality control and the reference collection ensures verification, taxonomic consistency, and repeatability. Specimens curated by the Royal British Columbia Museum will be available in perpetuity for further research and to public inquiry that will be facilitated by an expert in collection management. The Royal BC Museum estimates that they will provide \$15,000 per year in in-kind maintenance of the collection including curation supplies and staff time.

The development of an Index of biotic integrity for the Slocan Watershed will provide a rating system and a list of priorities for wetland enhancement and conservation. We also plan to work towards establishing performance indicators for restoration work based on a large body of research by Suzanne Bayley (University of Alberta, emeritus) and Rebecca Rooney of the University of Waterloo (Bayley et al. 2014).

Data from our sites will also be leveraged in a variety of other projects and outreach:

- Community engagement and education regarding wetland habitats in the Slocan Watershed.
- Assessment of legacy mining on Seaton Creek wetland and downstream effects.
- Development of CABIN protocols and data sharing on a national level.
- Collaboration with the University of Waterloo.
- Biodiversity of wetland invertebrates in the Slocan Watershed in cooperation with the Royal BC Museum
- Spatial information on water quantity and quality monitoring data within the Columbia basin with respect to climate change in a Columbia Basin Trust project led by Martin Carver.
- Support of other conservation and restoration work under SWAMP.

SWAMP has identified a potential wetland restoration candidate on private land, and grass-roots work by the community has created a dialogue with private landowner. Successful restoration work funded by the Columbia Power Corporation under the Slocan River Riparian Restoration Program at the site has resulted in buy-in by land-owners with regards to restoring their non-functioning wetland. Applications for funding for this restoration site have been submitted to the National Wetland Conservation Fund and an application to the Fish and Wildlife Compensation Program was successful for work in 2016. The Central Kootenay invasive Species Society is willing to contribute to invasive species removal at the restoration site if needed. The Columbia Power Corporation may provide funds for educational signage at the site.

Photo 2. Photo by Ellen Kinsel from Marcy Mahr (2015)

Macroinvertebrates are appealing to community and educational programs. However, the biotic index of integrity is also a rigorous scientific method that once developed can be used by community members, nonprofits, and agencies, landowners to assess and implement restoration, preservation and land acquisition projects.

8 Acknowledgements

The Slocan Wetlands Assessment and Mapping Project (SWAMP) is a collaboration of three societies, Slocan Solutions, Slocan River Streamkeepers and Slocan Lake Stewardship, working with the BC Wildlife Federation, the Fish and Wildlife Compensation Program, Columbia Basin Trust, Selkirk College, Regional District of Central Kootenay, Environment Canada's Canadian Aquatic Biomonitoring Network and Canadian Wildlife Service National Wetland Conservation Fund, the Columbia Basin Watershed Network, the Royal BC Museum, Rebecca Rooney of the University of Waterloo and Darcie Quamme of Integrated Ecological Research and Ryan Durand of Durand Ecological Consulting. Since 2013, SWAMP has taken an integrated scientific approach to filling data gaps by identifying, mapping and classifying wetlands throughout the Slocan Valley watershed. This local initiative successfully brings together local professional biologists and citizen scientists to: 1)

conduct field surveys; 2) build a comprehensive wetlands database; 3) help refine provincial wetland classification for our region; and 4) identify/ prioritize sensitive wetlands for restoration and protection.

With respect to the present report, Darcie Quamme of Integrated Ecological Research developed the invertebrate protocol design, and conducted field work, statistical analyses and reporting. Rhia MacKenzie carried out grant applications, contract administration for the Slocan River Streamkeepers, field work and reporting. Richard Johnson served as the contract administrator under Slocan Solutions and provided the Stiff diagrams in in-kind hours under his company Opus. John Boulanger of Integrated Ecological Research provided statistical advice and carried out the statistical analyses that were carried out using SAS. Local streamkeepers, Verena Shaw, Mechelle Babic and Jennifer Yeow helped with field work in 2014. Tyson Ehlers and Ryan Durand carried out plant identifications.

The mapping and terrestrial vegetation assessment project of SWAMP led by Ryan Durand, funded by the Columbia Basin Trust, provided mapping products and reconnaissance work that suggested potential sites for the invertebrate component. Local community group members including: Rhia MacKenzie, Gregoire Lamoureux, Richard Johnson and Jennifer Yeow aided site selection by providing input on local knowledge of the area. Kristen Murphy of BC Forests, Lands and Natural Resources reviewed our site selection and protocols in 2015. Jolene Raggett of the Ministry of Environment agreed to be our contact in regards to water quality issues.

Funding, in-kind support or letters of support have been provided by BC Wildlife Federation, the Fish and Wildlife Compensation Program, Columbia Basin Trust, Selkirk College, Regional District of Central Kootenay, Environment Canada's Canadian Aquatic Biomonitoring Network and Canadian Wildlife Service National Wetland Conservation Fund, the Columbia Basin Watershed Network, the Ministry of Environment, the Ministry of Forests, Lands and Natural Resources, the Columbia Power Corporation and the Royal BC Museum.

Members of the SWAMP technical committee have provided valuable feedback and include: Jennifer Yeow, Rhia MacKenzie, Richard Johnson, Irene Manley, Margaret Hartley, Ann Meidinger, Bruce Cottingham, Amy Waterhouse, Doris Hausleitner, Gregoire Lamoureux, Marcy Mahr, Meeri Durand, Neil Fletcher, Terry Anderson, and Martin Carver.

9 References

Adama, D., V.C. Hawkes, M.T. Miller, and J. Sharkey. 2013. CLBMON-61 Kinbasket Reservoir Wetlands Monitoring Program. Annual Report – 2012. LGL Project EA3398. Unpublished report by LGL Limited environmental research associates, Sidney, BC for BC Hydro Generations, Water License Requirements, Burnaby, BC.

Akaike, H. (1974), "A new look at the statistical model identification" (PDF), IEEE Transactions on Automatic Control 19 (6): 716–723, doi:10.1109/TAC.1974.1100705, MR 0423716.

Anscombe, F.J. 1948. The transformation of Poisson, binomial, and negative binomial data. Biometrika 35:246-254.

Apfelbeck, R. 2000. Development of biocriteria for wetlands in Montana. Prep. for Montana Department of Environmental Quality, Helena, Montana.

Archer, R.W., Christopher, P., Lorenz, J. and Jones, K.E. 2010. Monitoring and assessing marsh habitat health in the Niagara River area of concern. Prep. for Environment Canada-Great Lakes Sustainability Fund.

Bailey RC, Norris RH, and Reynoldson TB. (2004) Bioassessment of freshwater ecosystems: using the Reference Condition Approach. Springer.

Bailey, J.L. and Reynoldson, T.B. 2009. Preliminary wetland aquatic biomonitoring data collection manual. Commissioned for: Canadian Wildlife Service (Yukon).

Bayley, SE, Wilson, MJ, Rooney RC, and Bolding MT, 2014. Assessment Methods for Reclamation of Permanent Marshes in the Oil Sands: Handbook and Video. Prepared by The Bayley Lab, Department of Biological Sciences, University of Alberta, Edmonton, Alberta.

Blocksome, K.A. 2003. A performance comparison of metric scoring methods for a multimetric index for Mid-Atlantic highlands streams. Environmental Management, 31 (5), 670-682.

Borcard, D, F. Gillet and P. Legendre. 2011. Numerical Ecology with R. Springer. New York. P. 306.

Cavanagh, N., R.N.Nordin, L.W.Pommen and L.G. Swain. 1997. Guidelines for designing and implementing a water quality monitoring program in British Columbia. Resources Inventory Committee, British Columbia Ministry of Environment, Lands and Parks.

Clark, M.J.R. (editor). 2013. British Columbia Field Sampling Manual. Water, Air and Climate Change Branch, Ministry of Water, Land and Air Protection, Victoria, BC, Canada.

Clements, W.H., D.M. Carlisle, J.M. Lazorchak and P.C. Johnson. 2000. Heavy metals structure benthic communities in Colorado Mountain Streams. Ecol. App. 10 (2), 2000. p. 626-638.

Duncan, J. and L. Duncan. 2012. Operating Procedures: Columbia Basin Water Quality Monitoring Project. Prep. for Columbia Basin Trust.

Durand, R. 2014. SWAMP Phase I: Slocan Wetlands Assessment and Monitoring Project. Prep. for: Slocan Solutions Society, Slocan Lake Stewardship Society, BC Wildlife Federation and Slocan River Streamkeepers.

Durand, R. 2015. SWAMP Phase II: Slocan Wetlands Assessment and Monitoring Project. Prep. for: Slocan Solutions Society, Slocan Lake Stewardship Society, BC Wildlife Federation and Slocan River Streamkeepers.

Durand, R. 2016. SWAMP Phase III: Slocan Wetlands Assessment and Monitoring Project. Prep. for: Slocan Solutions Society, Slocan Lake Stewardship Society, BC Wildlife Federation and Slocan River Streamkeepers.

Eaton, B. 2005. Report on tests of aquatic sampling protocols, Alberta Biodiversity Monitoring Program. Prep. for Alberta Research Council.

Environment Canada. April 2007. CABIN Field Manual for Streams. Reynoldson, T. B., C. Logan, T. Pascoe, S. Thompson, S. Sylvestre, C. Mackinlay, and H. McDermott.

Environment Canada. April 2012. CABIN Laboratory Methods: Processing, taxonomy and quality control of benthic macroinvertebrates. H. McDermott, T. Paul and S. Strachen.

EPA. 2002. Methods for evaluating wetland condition: developing metrics and indexes of biological integrity. Office of Water, Us. Environmental Protection Agency, Washington, DC. P.38.

Falcone, J.A., Carlisle, D.M., Weber, L.C. 2010. Quantifying human disturbance in watersheds: variable selection and performance of a GIS-based disturbance index for predicting the biological condition of perennial streams. Ecological Indicators 10, 264-273.

Holme, S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 65–70.

Jepson, S., C. Mazzacano, S.H. Hoffman Black. 2007. Final Report to the Environmental Protection Agency (EPA), Region 10. Pacific Northwest Wetland Macroinvertebrate Monitoring Protocols and Variability in Freshwater Riverine Impounding Wetlands. Prep. for the US EPA, Region 10, Seattle Washington.

Kovalenko KE, Brady VJ, Ciborowski JJH, Ilyushkin S, Johnson LB. 2014. Functional Changes in Littoral Macroinvertebrate Communities in Response to Watershed-Level Anthropogenic Stress. PLoS ONE 9(7): e101499. doi:10.1371/journal.pone.0101499

Mahr, M. 2015. SWAMP's Wetland Field Day North Slocan Valley 2015. Slocan Valley Wetland Assessment and Mapping Project. Web. Date of Access: 26 Jan. 2016. <u>Pdf</u>.

Marvin-DiPasquale, Mark, Alpers, Charles N., and Fleck, Jacob A., 2009, Mercury, methylmercury, and other constituents in sediment and water from seasonal and permanent wetlands in the Cache Creek Settling Basin and Yolo Bypass, Yolo County, California, 2005–06: U.S. Geological Survey, Open File Report 2009-1182.

Mazzacano, Celeste. 2011. Developing a framework for the Oregon Wetland Monitoring and Assessment Program: Developing an invertebrate-based monitoring tool to assess the biological integrity of Pacific Northwest Freshwater Wetlands. Prep. for Oregon Watershed Enhancement Board. by Xerces Society.

MacKenzie, W. and J. Moran. 2004. Wetlands of British Columbia; A guide to identification. BC Ministry of Forests. Land Management Handbook No. 52.

McCullough, P., and J. A. Nelder. 1989. Generalized Linear Models. Volume 2. Chapman and Hall, New York, New York, USA.

Miller, M.T. and V.C. Hawkes. 2013. CLBMON-11B4 Monitoring Wetland and Riparian Habitat in Revelstoke Reach in Response to Wildlife Physical Works. Annual Report – 2012. LGL Report EA3413. Unpublished report by Okanagan Nation Alliance and LGL Limited environmental research associates, Sidney, BC, for BC Hydro Generation, Water Licence Requirements, Burnaby, BC.

Milliken, G. A., and D. E. Johnson. 2002. Analysis of messy data, Volume III: Analysis of covariance. Chapman and Hall, New York, New York, USA.

Ministry of Environment, BC. 2008. Interim Hygiene Protocols for Amphibian field staff and researchers. Pdf.

Nagpal, N.K., D.A. Levy, and D.D. MacDonald. 2003. Ambient water quality guidelines for chloride. Prep. For Ministry of Environment, Environmental Protections, Victoria, BC.

R Development Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.Rproject.org.

Rooney, R. and E. Azeria. 2015. Cross-taxon congruence strength varies with the size of regional species pools and intensity of human disturbance. Journal of Biogeography. 42: 439-451.

Rooney, R. C. and S. E. Bayley. 2012. Development and testing of an index of biotic integrity based on submersed and floating vegetation and its application to assess reclamation wetlands in Alberta's oil sands area, Canada. Environmental Monitoring and Assessment 184: 749-761

R. C. Rooney and S. E. Bayley. 2010. Quantifying a stress gradient: An objective approach to variable selection, standardization and weighting in ecosystem assessment". Ecological Indicators 10: 1174-1183.

47

Sandowski, E. The impacts of chloride concentrations on wetlands and amphibian distribution in the Toronto region. In Prairie Perspectives. Ed. By B.D. Thraves. 2002, The University of Regina Department of Geography. p. 144-161.

SAS Institute. 2000. Version 8.1. The SAS Institute, Cary NC.

Stiff, H. A., Jr., 1951. "The interpretation of chemical water analysis by means of patterns" Journal of Petroleum Technology, v. 3. no.10.

Tall, L., G. Méthot, A. Armellin and B. Pinel-Alloul. 2008. Bioassessment of Benthic Macroinvertebrates in Wetland Habitats of Lake Saint-Pierre (St. Lawrence River) (St. Lawrence River). J. Great Lakes Res. 34: 599-614.

U.S. EPA. 2002. Methods for Evaluating Wetland Condition: Developing Metrics and Indexes of Biological Integrity. Office of Water, U.S. Environmental Protection Agency, Washington, DC. EPA-822-R-02-016.

Uzarski, D.G., Brady, V.J., Cooper, M. 2011. Quality Assurance Project Plan, GLIC: Implementing Great Lakes Coastal Wetland Monitoring. Prep. for U.S. EPA GLNPO (G-17J) 77 W. Jackson Blvd. Chicago, IL, 60604-3590, Contract/WA/Grant No./Project Identifier: EPAGLNPO-2010-H-3-984-758.

Yates, A. and R. Bailey. 2010a. Improving the description of human activities potentially affecting rural stream ecosystems. Landscape Ecology. 637:87-100.

Yates, A. and R. Bailey. 2010b. Selecting objectively defined reference sites for stream bioassessment programs. Environmental Monitoring and Assessment 25:371-382.

Zar, J.H. 1984, Biostatistical analysis. Prentice-Hall Inc., Upper Saddle River, NJ. P. 718.

10 Appendices

10.1 Appendix 1: Site Locations

Sample.id	Disturbances	Year	Elevation (m)	Northing	Easting	%Natural	%Modified	%Disturbed	CABIN	Dominant emergent, 5x5 m
BEAR001	Highway, lake outflow,	2015	1080	5543400	486333	75.1	19.3	5.6	Riverine	Equisetum sylvaticum
BON001	Potential Reference	2015	576	5549023	466568	87.7	1.4	10.9	Lacustrine	Chara,Calliergon sp.,Eleocharis rostellata
BVL001	Potential Reference	2014	867	5561188	464335	77.5	20.1	2.4	Riverine	Equisetum arvense
BVL002	Potential Reference	2015	887	5560619	464692	97.8	0.1	2.1	Riverine	Equisetum fluviatile
BVL003	Potential Reference	2015	891	5560293	464563	95.0	1.8	3.2	Riverine	Carex lasiocarpa
CL001	Potential Reference	2015	1515	5482407	453242	65.5	28.7	5.8	Lacustrine	Carex utriculata
ELD001	Canary Reed Grass, residential	2015	521	5502111	462894	65.3	17.4	17.4	Floodplain	Carex utriculata
FO001	Roads/Rail bed, chloride	2015	519	5496615	460192	41.9	34.3	23.8	Floodplain	Ranunculus aquatilis
FRA001	Cattle	2015	507	5492379	455226	84.1	2.6	13.2	Floodplain	Sparganium angustifolium
GC001	Potential Reference	2015	1571	5480369	452213	98.3	0.0	1.7	Paulstrine	Equisetum sp.
GC002	Potential Reference	2015	1580	5479637	452715	94.8	0.0	5.2	Paulstrine	Sparganium sp.
HAY001	Canary Reed Grass, road, residential	2015	496	5482263	457573	53.4	15.5	31.1	Floodplain	Phalaris arundinacea
LSL001	Potential Reference	2014	611	5503393	452782	71.8	17.7	10.6	Lacustrine	Equisetum fluviatile
LSL002	Potential Reference	2015	653	5501110	451350	94.8	0.0	5.2	Lacustrine	Equisetum fluviatile
LWL001	Potential Reference	2015	906	5564499	459540	91.7	2.8	5.5	Lacustrine	Carex utriculata
PC002	Residential	2014	567	5474295	454778	59.1	5.5	35.3	Riverine	Scirpus microphyllum, Carex sp.
SEAT001	Metals, legacy mining	2015	1035	5542680	485047	96.6	0.0	3.4	Riverine	Calamagrostis canadensis
SEAT002	Metals, legacy mining	2014	962	5541616	483515	86.0	11.6	2.4	Riverine	Calliergon sp.,Hippuris vulgaris,Carex utriculata
SEAT003	Metals, legacy mining	2015	1008	5542111	484088	98.0	0.0	2.0	Riverine	Equisetum fluviatile
SUM001	Highway, rail, lake outflow	2015	702	5555073	456568	77.2	0.0	22.8	Lacustrine	Sparganium angustifolium
SUM002	Lake influence, recreation, residential	2015	765	5555285	455800	86.4	0.4	13.1	Lacustrine	Carex utriculata, Schoenoplectis tabernaemontanii
TY001	Canary Reed Grass, residential	2015	513	5492796	455562	85.6	0.4	13.9	Floodplain	Myriophyllum spicatum
WIN001	Potential Reference	2015	976	5494995	461820	92.2	4.0	3.8	Paulstrine	Scolochloa festucaceae,Mentha arvensis
WIN002	Potential Reference	2015	1028	5495161	462757	79.6	13.7	6.6	Paulstrine	Carex utriculata

% Land cover (Natural/Modified/Disturbed), measured as a GIS variable within 500m buffer zone

10.2 Appendix 2: Field meta-data

Study Site Vame	SWAMP GC001 (July 9, 2015) Ryan's Fen	SWAMP WIN001 (June 30,2015) Winlaw woodlot	SWAMP WIN002 (June 30,20' Winlaw woodlot
Basin	Columbia Basin	Columbia Basin	Columbia Basin
Year	2015		20
SampleNumber	1	1	
Site Status	Pot. Ref.	Test	Te
_atitude	49.2826	49.36374	49.362
_ongitude	-117.3934	-117.31707	-117.305
Altitude	1571	976	10
Datum	nad83	nad83	nad
Ecoregion	Columbia Mountains	Columbia Mountains	Columbia Mountai
Basin - pond shape -Circular/Ellipse (Binary)	0	0	
Basin - pond shape - Highly irregular (Binary)	1	1	
Basin - pond shape - Linear (Binary)	0	1	
Basin - pond shape - Complex (Binary)	1	0	
Disturbance (wetted area)-%none	100	100	1
Disturbance (wetted area)-%filling	0	0	
Disturbance (wetted area)-%grazing	0	0	
Disturbance (wetted area)-%road	0	0	
Disturbance (wetted area)-%urban	0	0	
Disturbance (wetted area)-%mining	0	0	
)isturbance (margin)-%none	90	90	1
isturbance (margin)-%filling	0		
Disturbance (margin)-%grazing	l o		
Disturbance (margin)-%road	10		
Disturbance (margin)-%farm yard	0		
Disturbance (margin)-%urban	0		
Disturbance (margin)-%mining	ů ů		
Surrounding Land use - Forest (Binary)	1		
Surrounding Land use - Field/Pasture (Binary)			
Surrounding Land use - Agriculture (Binary)	0		
Surrounding Land use - Agriculture (Binary)	0		
urrounding Land use - Logging (Binary) urrounding Land use - Mining (Binary)			
	0		
urrounding Land use - Comm/Industrial (Binary)			
urrounding Land use 500m - Forest (Binary)	1		
urrounding Land use 500m - Field/Pasture (Binary)	0		
urrounding Land use 500m - Agriculture (Binary)	0		
Surrounding Land use 500m - Residential/Urban (Binary)	0		
Surrounding Land use 500m - Logging (Binary)	0		
Surrounding Land use 500m - Mining (Binary)	0		
Surrounding Land use 500m - Comm/Industrial (Binary)	0	-	
Dominant Surrounding Land use	forest	forest	forest
General -Metered - Conductivity (uS/s)	18		
General -Metered - pH (pH)	7.5		8
labitats - Marginal (Binary)	1		
labitats - Emergent (Binary)	1		
labitats -Submergent (Binary)	1		
labitats - Open water >2m (Binary)	1		
1arginal zone veg-% Woody riparian	20		
/arginal zone veg-% Typha	0	0	
larginal zone veg-% Scirpus	0	0	
/larginal zone veg-% Grass/sedge	80	20	
larginal zone veg- Dominant	grass/sedge	woody.riparian	woody/riparian
larginal zone veg- 2nd Dominant	woody/riparian	grass/sedge	grass/sedge
eaver activity - present (Binary)	0	0 0	
eaver activity - absent (Binary)	1	1	
laximum Depth - (m) - < 1m (Binary)	0		
faximum Depth - (m) - 1-2 m (Binary)	1		
laximum Depth - (m) - >2 m (Binary)	0		
Quadrat - Periphyton (1-5, not slippery to obscured)	1		
luadrat - % Area - Emergent	30		
uadrat -% Area - Floating plants	15		
luadrat - % Area - Open water	55		
luadrat - % Bottom Area - Periphyton	0		
auadrant - % Area - Submergent plants	30		
Quadrant - % Area - Submergent plants	0		
ite -% Area -Emergent vegetation -Visual	25		
ite-% Area -Emergent vegetation - Visual	75		
ite-% Area -Open Water- Visual	0		
ite - Drawdown mudflat (Binary) at site	1		
	1		-
ite - Average mud flat width (m) at site			
ite - Water level - Vestigal (Binary)	0		
ite - Water level - Recessional (Binary)	1		
ite - Water level - Intermedia (Binary)	0		
ite - Water level - Full flooded (Binary)	0		
ite - Water level - Overflowing (Binary)	0		
ite - Hydrological Type - Palustrine (Binary)	1		
ite - Hydrological Type - Lacustrine (Binary)	0		
ite - Hydrological Type - Riverine (Binary)	0	0	
ite- Wetland type - bog (Binary)	0	0	
ite- Wetland type - fen (Binary)	1	0	
ite- Wetland type - marsh (Binary)	0	0	
		0	
ite- Wetland type - swamp (Binary)	0	•	

Study Site Name	SWAMP CL001 (July 9,2015) Cooley Lake	SWAMP ELD001 (July 13,2015) Elders' pond	SWAMP FO001 (June 29,2015) Fomi's	SWAMP FRA001 (July 10, 2015) Franks oxbow
Basin	Columbia Basin	Columbia Basin	Columbia Basin	Columbia Basin
Year	2015	2015	2015	2015
SampleNumber	1	1		1
Site_Status	Test	Test		Test
Latitude	49.2933			
Longitude	-117.3844	-117.3051		-117.371
Altitude	1515			
Datum	nad83			
Ecoregion	Columbia Mountains	Columbia Mountains		Columbia Mountains
Basin - pond shape -Circular/Ellipse (Binary)	1	1	1	0
Basin - pond shape - Highly irregular (Binary)	0			
Basin - pond shape - Linear (Binary)	0	0		
Basin - pond shape - Complex (Binary) Disturbance (wetted area)-%none	100	100		
Disturbance (wetted area)-%filling	0			
Disturbance (wetted area)-%grazing	0	0		
Disturbance (wetted area)-%road	0	0		
Disturbance (wetted area)-%urban	0	0		
Disturbance (wetted area)-%mining	0			
Disturbance (wetted area)- %nnning Disturbance (margin)-%none	100	0		
	0	0		
Disturbance (margin)-%filling Disturbance (margin)-%grazing	0	0		
Disturbance (margin)-%grazing Disturbance (margin)-%road	0			
Disturbance (margin)-%road Disturbance (margin)-%farm yard	0			
Disturbance (margin)-%iarm yard Disturbance (margin)-%urban	0	25		
Disturbance (margin)-%mining	0	25		
Surrounding Land use - Forest (Binary)	1	1		
Surrounding Land use - Field/Pasture (Binary)	0	1		
Surrounding Land use - Agriculture (Binary)	0	1		
Surrounding Land use - Residential/Urban (Binary)	0	1		
Surrounding Land use - Logging (Binary)	Ő	0		
Surrounding Land use - Mining (Binary)	ő	0		
Surrounding Land use - Commercial/Industrial (Binary)	o o	0		
Surrounding Land use 500m - Forest (Binary)	1	1		
Surrounding Land use 500m - Field/Pasture (Binary)	o	1		
Surrounding Land use 500m - Agriculture (Binary)	ő	1		
Surrounding Land use 500m - Residential/Urban (Binary)	Ő			
Surrounding Land use 500m - Logging (Binary)	0			
Surrounding Land use 500m - Mining (Binary)	ő	0		
Surrounding Land use 500m - Commercial/Industrial (Binary)	Ő	0		Č
Dominant Surrounding Land use	forest	residential/urban	agriculture	agriculture
General -Metered - Conductivity (uS/s)	17	165		
General -Metered - pH (pH)	7	9.4		9.7
Habitats - Marginal (Binary)	1	1	1	1
Habitats - Emergent (Binary)	1	1	1	1
Habitats -Submergent (Binary)	1	1	1	1
Habitats - Open water >2m (Binary)	1	1	1	1
Marginal zone veg-% Woody riparian	70	10	30	30
Marginal zone veg-% Typha	0	40	1	(
Marginal zone veg-% Scirpus	0	1	1	(
Marginal zone veg-% Grass/sedge	30	50	70	70
Marginal zone veg- Dominant	woody/riparian	grass/sedge	grass/sedge	grass/sedge
Marginal zone veg- 2nd Dominant	grass/sedge	typha	woody/riparian	woody/riparian
Canopy cover - not shaded (Binary)	0	1	1	1
Canopy cover - partially shaded (Binary)	1	0	0	(
Canopy cover - fully shaded (Binary)	0	0	0	(
Beaver activity - present (Binary)	0	0	1	(
Beaver activity - absent (Binary)	1	1	0	1
Maximum Depth - (m) - < 1m (Binary)	0	1	1	
Maximum Depth - (m) - 1-2 m (Binary)	1	0		
Maximum Depth - (m) - >2 m (Binary)	0	0	0	
Quadrat - Periphyton (1-5, not slippery to obscured)	2	4	2.5	1
Quadrat - % Area - Emergent	50	80	40	90
Quadrat -% Area - Floating plants	10	10	30	1(
Quadrat - % Area - Open water	40	10	30	
Quadrat - % Bottom Area - Periphyton	1	90	80	(
Quadrant - % Area - Submergent plants	1	90		
Quadrat- %Woody debris				
Site -% Area -Emergent vegetation -Visual	5			
Olde - 70 Alea -Emergent vegetation - visual	5	90		
Site-% Area -Submergent vegetation - Visual			60	31
	20	85		
Site-% Area -Submergent vegetation- Visual	20 0	85	0	(
Site-% Area -Submergent vegetation- Visual Site-% Area -Open Water- Visual Site - Drawdown mudflat (Binary) at site	20 0 80	85 0 0	0 1	(
Site-% Area -Submergent vegetation- Visual Site-% Area -Open Water- Visual	20 0 80 1	85 0 0	0 1 0.25	
Site-% Area -Submergent vegetation- Visual Site-% Area -Open Water- Visual Site - Drawdown mudflat (Binary) at site Site - Average mud flat width (m) at site Site - Water level - Vestigal (Binary)	20 0 80 1 0.5	85 0 0 0 0 0	0 1 0.25 0	
Site-% Area -Submergent vegetation- Visual Site-% Area -Open Water- Visual Site - Drawdown mudflat (Binary) at site Site - Average mud flat width (m) at site Site - Water level - Vestigal (Binary) Site - Water level - Recessional (Binary)	20 0 80 1 0.5 0	85 0 0 0 0 1	0 1 0.25 0 1	
Site-% Area -Submergent vegetation- Visual Site-% Area -Open Water- Visual Site - Drawdown mudflat (Binary) at site Site - Average mud flat width (m) at site Site - Water level - Vestigal (Binary) Site - Water level - Recessional (Binary) Site - Water level - Intermedia (Binary)	20 0 80 1 0.5 0 1	85 0 0 0 0 1	0 1 0.25 0 1 0	
Site-% Area -Submergent vegetation- Visual Site-% Area -Open Water- Visual Site - Drawdown mudflat (Binary) at site Site - Average mud flat width (m) at site Site - Water level - Vestigal (Binary) Site - Water level - Necessional (Binary) Site - Water level - Intermedia (Binary) Site - Water level - Full flooded (Binary)	20 0 80 1 0.5 0 1 0 0 0	85 0 0 0 1 1 0 0 0	0 1 0.25 0 1 0 0 0 0	
Site-% Area -Submergent vegetation- Visual Site-% Area -Open Water- Visual Site - Drawdown mudflat (Binary) at site Site - Average mud flat width (m) at site Site - Water level - Vestigal (Binary) Site - Water level - Recessional (Binary) Site - Water level - Intermedia (Binary) Site - Water level - Full flooded (Binary) Site - Water level - Overflowing (Binary)	20 0 80 1 0.5 0 1 0 0 0 0 0 0 0 0	85 0 0 0 0 1 1 0 0 0 0 0 0	0 1 0.25 0 1 0 0 0 0 0 0	
Site-% Area -Submergent vegetation- Visual Site-% Area -Open Water- Visual Site - Drawdown mudflat (Binary) at site Site - Average mud flat width (m) at site Site - Water level - Vestigal (Binary) Site - Water level - Recessional (Binary) Site - Water level - Intermedia (Binary) Site - Water level - Full flooded (Binary) Site - Water level - Full flooded (Binary) Site - Hydrological Type - Palustrine (Binary)	20 0 80 1 0.5 0 1 0 0 0 0 0 0 0 0 0 0 0 0	85 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0	0 1 0.25 0 1 0 0 0 0 0 0 0 0 0 0 0 0	
Site-% Area -Submergent vegetation- Visual Site-% Area -Open Water- Visual Site - Drawdown mudflat (Binary) at site Site - Average mud flat width (m) at site Site - Water level - Vestigal (Binary) Site - Water level - Necessional (Binary) Site - Water level - Recessional (Binary) Site - Water level - Full flooded (Binary) Site - Water level - Full flooded (Binary) Site - Water level - Overflowing (Binary) Site - Hydrological Type - Palustrine (Binary)	20 0 80 1 0.5 0 1 0 0 0 0 0 0 0 0	85 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0	0 1 0.25 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Site-% Area -Submergent vegetation- Visual Site-% Area -Open Water- Visual Site - Drawdown mudflat (Binary) at site Site - Average mud flat width (m) at site Site - Water level - Vestigal (Binary) Site - Water level - Recessional (Binary) Site - Water level - Intermedia (Binary) Site - Water level - Full flooded (Binary) Site - Water level - Full flooded (Binary) Site - Hydrological Type - Palustrine (Binary)	20 0 80 1 0.5 0 1 0 0 0 0 0 0 1	85 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0.25 1 0 0 0 0 0 1	

Study Site Name	SWAMP GC002 (July 9, 2015) Flicker pond	SWAMP HAY001 (July 10,2015) Hay's wetland	Little Slocan South	SWAMP LWL001 (July 20,2015) Little Wilson Lake
Basin	Columbia Basin	Columbia Basin	Columbia Basin	Columbia Basin
Year	2015		2015	2015
SampleNumber Site Status	2 Pot. Ref.	1 Test	2 Pot. Ref.	1 Pot. Ref.
Latitude	49.2802		49.3938	
Longitude	-117.3909		-117.4027	-117.3402
Altitude	1580	496	653	906
Datum	nad83	nad83	nad83	nad83
Ecoregion	Columbia Mountains	Columbia Mountains	Columbia Mountains	Columbia Mountains
Basin - pond shape -Circular/Ellipse (Binary)	1		0	
Basin - pond shape - Highly irregular (Binary) Basin - pond shape - Linear (Binary)	0		0	
Basin - pond shape - Complex (Binary)	0		1	0
Disturbance (wetted area)-%none	100		100	100
Disturbance (wetted area)-%filling	0	0	0	0
Disturbance (wetted area)-%grazing	0		0	0
Disturbance (wetted area)-%road	0		0	
Disturbance (wetted area)-%urban	0		0	-
Disturbance (wetted area)-%mining	0		0	
Disturbance (margin)-%none	50		100 0	50 0
Disturbance (margin)-%filling Disturbance (margin)-%grazing	0		0	
Disturbance (margin)-%grazing Disturbance (margin)-%road	50		0	
Disturbance (margin)-%farm yard	0		0	
Disturbance (margin)-%urban	Ő		0	Ő
Disturbance (margin)-%mining	0	0	0	0
Surrounding Land use - Forest (Binary)	1	1	1	1
Surrounding Land use - Field/Pasture (Binary)	0		0	
Surrounding Land use - Agriculture (Binary)	0		0	
Surrounding Land use - Residential/Urban (Binary)	0		0	
Surrounding Land use - Logging (Binary) Surrounding Land use - Mining (Binary)	0		0	0
Surrounding Land use - Comm/Industrial (Binary)	0		0	0
Surrounding Land use 500m - Forest (Binary)	1	1	1	1
Surrounding Land use 500m - Field/Pasture (Binary)	0		1	0
Surrounding Land use 500m - Agriculture (Binary)	0	0	0	0
Surrounding Land use 500m - Residential/Urban (Binary)	0	1	0	0
Surrounding Land use 500m - Logging (Binary)	0		1	1
Surrounding Land use 500m - Mining (Binary)	0		0	0
Surrounding Land use 500m - Comm/Industrial (Binary)	0	•	0	0
Dominant Surrounding Land use General -Metered - Conductivity (uS/s)	forest 9	residential/urban 97	forest 40	forest 55
General -Metered - pH (pH)	8.3		7.8	
Habitats - Marginal (Binary)	1		1.0	1
Habitats - Emergent (Binary)	1		1	1
Habitats -Submergent (Binary)	0	1	1	1
Habitats - Open water >2m (Binary)	1		1	0
Marginal zone veg-% Woody riparian	85		0	
Marginal zone veg-% Typha	0		0 10	
Marginal zone veg-% Scirpus Marginal zone veg-% Grass/sedge	15		90	90
Marginal zone veg- Dominant	woody/riparian	woody/riparian	grass/sedge	grass/sedge
Marginal zone veg- 2nd Dominant	grass/sedge	grass/sedge	scirpus	woody/riparian
Canopy cover - not shaded (Binary)	1	0	1	
Canopy cover - partially shaded (Binary)	0		0	
Canopy cover - fully shaded (Binary)	0		0	
Beaver activity - present (Binary)	0	0	1	
Beaver activity - absent (Binary)	1	1	0	^
Maximum Depth - (m) - < 1m (Binary) Maximum Depth - (m) - 1-2 m (Binary)	0		0	0
Maximum Depth - (m) - 1-2 m (Binary) Maximum Depth - (m) - >2 m (Binary)	0		1	
Quadrat - Periphyton (1-5, not slippery to obscured)	2		2	
Quadrat - % Area - Emergent	80		80	
Quadrat -% Area - Floating plants	15	15	1	1
Quadrat - % Area - Open water	5	5	19	0
Quadrat - % Bottom Area - Periphyton	5		5	
Quadrant - % Area - Submergent plants	0		5	
Quadrat- %Woody debris	2		0	
Site -% Area -Emergent vegetation -Visual Site-% Area -Submergent vegetation- Visual	40		45 5	
Site-% Area -Open Water- Visual	60		50	
Site - Drawdown mudflat (Binary) at site	1		1	
Site - Average mud flat width (m) at site	1.5		5	ő
Site - Water level - Vestigal (Binary)	0		0	0
Site - Water level - Recessional (Binary)	1	1	1	1
Site - Water level - Intermedia (Binary)	0		0	
Site - Water level - Full flooded (Binary)	0		0	
Site - Water level - Overflowing (Binary)	0		0	
Site - Hydrological Type - Palustrine (Binary)	1		0	0
Site - Hydrological Type - Lacustrine (Binary) Site - Hydrological Type - Riverine (Binary)	0		1	
	0	1	0	
	0	0	0	0
Site-Wetland type - bog (Binary) Site- Wetland type - fen (Binary)	0		0	

Study Site Name	SWAMP SEAT003 (August 6,2015) Seaton Cr. Complex	SWAMP SUM001 (July 21,2015) Summit Lake Swamp		SWAMP TY001 (July 10, 2015) Tyson's pond
Basin	Columbia Basin	Columbia Basin	Columbia Basin	Columbia Basin
Year	2015	2015	2015	201
SampleNumber	4	1	2	
Site_Status	Test		Test	Pot. Ref
Latitude	50.01519	50.06466	50.08533	49.3510
Longitude	-117.13198		-117.37071	-117.3653
Altitude	1008			51
Datum	nad83	nad83	nad83	nad8
Ecoregion	Columbia Mountains	Columbia Mountains	Columbia Mountains	Columbia Mountains
Basin - pond shape -Circular/Ellipse (Binary)	0		1	
Basin - pond shape - Highly irregular (Binary)	1		0	
Basin - pond shape - Linear (Binary)	0		0	
Basin - pond shape - Complex (Binary)	1		0	
Disturbance (wetted area)-%none	50	50	80	10
Disturbance (wetted area)-%filling	0		0	
Disturbance (wetted area)-%grazing	50	-	20	
Disturbance (wetted area)-%road	0		20	
Disturbance (wetted area)-%urban Disturbance (wetted area)-%mining	0		0	
Disturbance (werted area)- %mining Disturbance (margin)-%none	20		40	10
Disturbance (margin)- %filling	20		40	10
Disturbance (margin)-%grazing	0		0	
Disturbance (margin)- %grazing	50		60	
Disturbance (margin)-%farm yard	0		0	
Disturbance (margin)-%iarm yard Disturbance (margin)-%urban	0		0	
Disturbance (margin)-%urban Disturbance (margin)-%mining	30		0	
Surrounding Land use - Forest (Binary)	1	1	1	
Surrounding Land use - Field/Pasture (Binary)	0		0	
Surrounding Land use - Agriculture (Binary)	0		0	
Surrounding Land use - Residential/Urban (Binary)	o o		1	
Surrounding Land use - Logging (Binary)	1		1	
Surrounding Land use - Mining (Binary)	1		0	
Surrounding Land use - Comm/Industrial (Binary)	, o		ů 0	
Surrounding Land use 500m - Forest (Binary)	1		1	
Surrounding Land use 500m - Field/Pasture (Binary)	, o		0	
Surrounding Land use 500m - Agriculture (Binary)	0	0	0	
Surrounding Land use 500m - Residential/Urban (Binary)	0	1	1	
Surrounding Land use 500m - Logging (Binary)	1	1	1	
Surrounding Land use 500m - Mining (Binary)	1	1	1	1
Surrounding Land use 500m - Comm/Industrial (Binary)	0	0	0	
Dominant Surrounding Land use	forest	forest	forest	forest
Habitats - Marginal (Binary)	1	1	1	
Habitats - Emergent (Binary)	1	1	1	
Habitats -Submergent (Binary)	0	1	1	
Habitats - Open water >2m (Binary)	1		1	
Marginal zone veg-% Woody riparian	10		10	1
Marginal zone veg-% Typha	0	-	0	
Marginal zone veg-% Scirpus	0		60	
Marginal zone veg-% Grass/sedge	90		30	9
Marginal zone veg- Dominant	grass/sedge	grass/sedge	scirpus	grass/sedge
Marginal zone veg- 2nd Dominant	woody/riparian	woody/riparian	grass/sedge	woody/riparian
Canopy cover - not shaded (Binary)	1	1	1	
Canopy cover - partially shaded (Binary)	0		0	
Canopy cover - fully shaded (Binary)	0		0	
Beaver activity - present (Binary)	1		0	
Beaver activity - absent (Binary)	0		1	
Maximum Depth - (m) - < 1m (Binary)	0		0	
Maximum Depth - (m) - 1-2 m (Binary)	1		0	
Maximum Depth - (m) - >2 m (Binary)	0	-	1	
Quadrat - Periphyton (1-5, not slippery to obscured)	3			
Quadrat - % Area - Emergent	85			5
Quadrat -% Area - Floating plants	0			
Quadrat - % Area - Open water	15			
Quadrat - % Bottom Area - Periphyton	50		0	2
Quadrant - % Area - Submergent plants	0		1	7
Quadrat- %Woody debris	0		1	2
Site -% Area -Emergent vegetation -Visual	90		75	3
Site-% Area -Submergent vegetation- Visual	0		1	7
Site-% Area -Open Water- Visual Site - Drawdown mudflat (Binary) at site	1		0	
· · · · · · · · · · · · · · · · · · ·	1		0	0.
Site - Average mud flat width (m) at site Site - Water level - Vestigal (Binany)	0		0	0.
Site - Water level - Vestigal (Binary)	0		0	
Site - Water level - Recessional (Binary) Site - Water level - Intermedia (Binary)	0		0	
	0		0	
Site - Water level - Full flooded (Binary) Site - Water level - Overflowing (Binapy)	0		0	
Site - Water level - Overflowing (Binary) Site - Hydrological Type - Palustrine (Binary)	0		0	
Site - Hydrological Type - Palustrine (Binary) Site - Hydrological Type - Lacustrine (Binary)	0		1	
Site - Hydrological Type - Lacustine (Binary) Site - Hydrological Type - Riverine (Binary)	1		0	
	I I I I I I I I I I I I I I I I I I I			
	0	0	0	
Site- Wetland type - bog (Binary) Site- Wetland type - fen (Binary)	0		0	

Study Site	SWAMP PC02 (Aug 25, 2014)	SWAMP TF01 (Aug 26, 2014)	SWAMP LSL01 (Aug 27, 2014)	SWAMP BVL01 (Aug 27, 2014)
Name	Pass Creek Wetland		Little Slocan Lakes Wetland	
Basin	Columbia Basin	Columbia Basin	Columbia Basin	Columbia Basin
Year	2014			2014
SampleNumber	2			
Site_Status Latitude	Test 49.79249954	Test 50.026668		Pot. Ref. 50.201836
Longitude	-116.8477783			
Altitude	577	-117.23015 950		
Datum	nad83			
Ecoregion	Columbia Mountains		Columbia Mountains	
Basin - pond shape -Circular/Ellipse (Binary)	0	0		0
Basin - pond shape - Highly irregular (Binary)	1	-	-	•
Basin - pond shape - Linear (Binary)	1	1		
Basin - pond shape - Complex (Binary)	1	1	1	1
Disturbance (wetted area)-%none	100	60	100	100
Disturbance (wetted area)-%filling	0	0	0	0
Disturbance (wetted area)-%grazing	0	0	0	0
Disturbance (wetted area)-%road	0	40	0	0
Disturbance (wetted area)-%urban	0			
Disturbance (wetted area)-%mining	0	-		
Disturbance (margin)-%none	75			
Disturbance (margin)-%filling	0			
Disturbance (margin)-%grazing	0			
Disturbance (margin)-%road	25			
Disturbance (margin)-%farm yard	0			-
Disturbance (margin)-%urban	0			
Disturbance (margin)-%mining	O			
Dominant Surrounding Land use	residential 82.6	mining 446	forest 37	forest 76
General -Metered - Conductivity (uS/s) General -Metered - dissolved oxygen (DO mg/L)	9			
General -Metered - pH (pH)	7.2			
General-Hach kit - Acidity (mg/L)	2.3			
General-Hach kit - Total dissolved solids (mg/L)	55			
General-Hach kit - Alkalinity (mg/L)	27.4			
General- Hach kit- Hardness (mg/L)	17.2			
Habitats - Marginal (Binary)	1			
Habitats - Emergent (Binary)	1	1		
Habitats -Submergent (Binary)	1	1	1	1
Habitats - Open water >2m (Binary)	0	0	1	0
Marginal zone veg-% Woody riparian	40			
Marginal zone veg-% Typha	0			
Marginal zone veg-% Scirpus	30			
Marginal zone veg-% Grass/sedge	30			
Marginal zone veg- Dominant	woody/riparian	woody/riparian	woody/riparian	woody/riparian
Marginal zone veg- 2nd Dominant	grass/sedge	grass/sedge	sedges/grasses	sedges/grasses
Maximum Depth - (m) - < 1m (Binary)	0			
Maximum Depth - (m) - 1-2 m (Binary)	1			
Maximum Depth - (m) - >2 m (Binary)	2			
Quadrat - Periphyton (1-5, not slippery to obscured) Quadrat - % Area - Emergent	50			
Quadrat - % Area - Emergent Quadrat -% Area - Floating plants	25			
Quadrat - % Bottom Area - Periphyton	0			
Quadrant - % Area - Submergent plants	50			
Quadrat- %Woody debris	5			
Site -% Area -Emergent vegetation -Visual	20			
Site-% Area -Submergent vegetation- Visual	40			
Site - Drawdown mudflat (Binary) at site	0	0		
Site - Average mud flat width (m) at site	0			
Site - Water level - Vestigal (Binary)	0	0	0	0
Site - Water level - Recessional (Binary)	1	1	1	0
Site - Water level - Intermedia (Binary)	0	0	0	0
Site - Water level - Full flooded (Binary)	0			
Site - Water level - Overflowing (Binary)	0			
Site - Hydrological Type - Palustrine (Binary)	0			
Site - Hydrological Type - Lacustrine (Binary)	0			
Site - Hydrological Type - Riverine (Binary)	1			
Site- Wetland type - bog (Binary)	0			
Site- Wetland type - fen (Binary)	0			
Site- Wetland type - marsh (Binary)	1			
Site- Wetland type - swamp (Binary)	0			
Site- Wetland type - shallow-water (Binary)	1			
Temperature - water- Degrees Celcius	20	14.7	22	7

Site DEAX801 (Luby 12, 2019) DOUND (Luby 12, 2019) Deave 1, 2019 Stampling Columba Basin Columba Basin 2015 2015 2015 Stampling Test Test </th <th>Ca J.</th> <th>CIWAND</th> <th>CIMAND</th> <th>CIMAND</th>	Ca J.	CIWAND	CIMAND	CIMAND
Name Dear Lake Boars and mathem Columba Basim Columba Basim Yas 2015	Study	SWAMP BEAR001 (July 14,2015)	SWAMP BON001 (July 21, 2015)	SWAMP BVI 002 (July 29.2015)
Banin Columba Basin Columba Basin Columba Basin Columba Basin Sampekhurber 1 1 2 Sampekhurber 1 1 2 Sampekhurber 100235 500235 101223 Sampekhurber 11722025 11722025 Langinger 11722027 11722025 Datum 0 0 0 Basin - pond haper - Complace (Brany) 0 0 0 Basin - pond haper - Linger (Brany) 0 0 0 0 Basin - pond haper - Linger (Brany) 0	Name			
SamgeAtumber 1 1 1 2 Laflude 50 253 50 253 107 117 117 250 Laflude 101 117 117 117 250 117 117 250 117 117 250 117 117 250 117 117 250 117 117 250 117 117 250 117 250 117 250 117 250 117 250 117 250 117 250 117 250 117 1100 <td>Basin</td> <td></td> <td></td> <td></td>	Basin			
Site_Status Test Test Test Test Test Lingtuck -117.1271 -117.2802 -117.2802 Conguos -117.1271 -117.2802 -117.2802 Econgion Columbia Mountains Columbia Mountains Columbia Mountains Econgion Columbia Mountains Columbia Mountains Columbia Mountains Bain - pond shape - Trighy impoult (Binary) 1 0 0 Bain - pond shape - Complex (Disnary) 0 0 0 Bain - pond shape - Complex (Disnary) 0 0 0 0 Bain - pond shape - Complex (Disnary) 0 <td< td=""><td></td><td></td><td></td><td></td></td<>				
Latilize 50.0233 50.0533 50.11422 Aztude 117.28005 -110.28005 -110.28005 -11				
Longlude -117.1127 -117.2805 -117.2805 Datum na683 na683 na683 Datum 0 0 0 Batin - pond shape - Chrodur Ellipse (Binary) 0 0 0 Batin - pond shape - Complex (Binary) 0 0 0 0 Datum complex de stars - Margan (Binary) 0 0 0 0 Disturbance (wetted ares)-Kinling 0 <				
Abmune 1080 576 687 Baum mad3 mad3 mad3 mad33 Eccegion Columbia Mountams Columbia M				
Datum madB3 medB3 columba Mourtams Columba Mourtams <thcolumba mourtams<="" th=""> Columba Mourtams<</thcolumba>				
Bain - jond shape - Cloudler (Binary) 0 0 0 Bain - jond shape - Linex (Binary) 1 1 1 Bain - jond shape - Linex (Binary) 0 0 0 Bain - jond shape - Linex (Binary) 1 1 1 1 Distubance (wetted area)-Kinone 0 70 100 Distubance (wetted area)-Kinone 0 0 0 0 Distubance (wetted area)-Kinone 0	Datum			
Bain - poid shape - Highly regular (Binary) 1 0 1 Bain - poid shape - Complex (Binary) 0 0 0 Bain - poid shape - Complex (Binary) 0 0 0 0 Disturbance (wetted area)-Kining 0 <td< td=""><td>Ecoregion</td><td>Columbia Mountains</td><td>Columbia Mountains</td><td>Columbia Mountains</td></td<>	Ecoregion	Columbia Mountains	Columbia Mountains	Columbia Mountains
Bain - poid shape - Linéar (Binay) 0 0 0 Bain - poid shape - Linéar (Binay) 1 1 1 Disturbance (wetted area)-Kinne 0 0 0 Disturbance (wetted area)-Kinning 0 0 0 0 Disturbance (wetted area)-Kinning 0	Basin - pond shape -Circular/Ellipse (Binary)		-	
Bain _ prod ships - Complex (Emary) 1 1 1 1 1 Disturbance (vetted ana)-%ione 0 30 0 Disturbance (vetted ana)-%ione 0 0 0 Disturbance (vetted ana)-%ione 0			-	
Dicturbance (wetted area)-%oling 0 70 100 Dicturbance (wetted area)-%oling 0 0 0 Dicturbance (wetted area)-%oling 0 0 0 Dicturbance (wetted area)-%oling 0 0 0 Dicturbance (wetted area)-%oning 0 0 0 Dicturbance (wetted area)-%oning 0 0 0 Dicturbance (wetted area)-%oning 0 0 0 0 Dicturbance (wetted area)-%oning 0 <td></td> <td>-</td> <td>-</td> <td></td>		-	-	
Dictubance (wetted area)-%ystad 0 0 0 Dictubance (wetted area)-%ystad 50 0 0 Dictubance (wetted area)-%ystad 0 0 0 Dictubance (wetted area)-%ustad 0 0 0 Dictubance (margin)-%anna 0 0 0 0 Dictubance (margin)-%anna 0 0 0 0 0 Dictubance (margin)-%anna 0				
Dictubence (vetted arag)%rogzing 0 0 0 Dictubence (vetted arag)%robzing 50 0 0 Dictubence (vetted arag)%robzing 50 0 0 Dictubence (vetted arag)%robzing 50 0 0 Dictubence (vetted arag)%robzing 0 0 0 0 Dictubence (vetted arag)%robzing 0 0 0 0 0 Dictubence (rangen)%derad arag)%robzing 0		-		
Diaturace (verted area)-Knimng 0 0 0 Diaturace (rangi)-Senae 0 40 0 Diaturace (rangi)-Senae 0 40 0 Diaturace (rangi)-Senae 0 0 0 0 Diaturace (rangi)-Senae 0 0 0 0 0 Diaturace (rangi)-Senae 0	Disturbance (wetted area)-%grazing			
Disturbance (writed ares) ⁵ syminng 60 0 0 Disturbance (margin)- ⁵ Syminng 0 20 0 Disturbance (margin)- ⁵ Syminng 0 0 0 0 Disturbance (margin)- ⁵ Syminng 0	Disturbance (wetted area)-%road	50	0	0
Disturbance (margin) % low in a second sec	Disturbance (wetted area)-%urban			
Disturbance (margin) %Bing and (margin) %ara (mar				
Disturbance (margin)-%arad 0 0 0 Disturbance (margin)-%arad 50 30 100 Disturbance (margin)-%arban 0 0 0 0 Disturbance (margin)-%arban 0 0 0 0 0 Strounding Land use - Forst (Binary) 0				
Diatubarce (margin)-%ional 50 30 100 Diatubarce (margin)-%urban 0 0 0 Diatubarce (margin)-%urban 0 1 0 0 Surounding Land use - Forset (Binary) 1 1 1 1 0		-		
Disturbance (margin)-%term) 0 0 0 Disturbance (margin)-%terming 0 0 0 Surrounding Land use - Forest (Binary) 0 0 0 Surrounding Land use - Forest (Binary) 0 0 0 0 Surrounding Land use - Agriculture (Binary) 0 0 0 0 0 Surrounding Land use - Agriculture (Binary) 0		-		
Disturbanee (margin)-%urbanin 0 10 0 Surrounding Land use - Forest (Binary) 1 1 1 Surrounding Land use - Forest (Binary) 0 0 0 Surrounding Land use - Residential/Urban (Binary) 0 0 0 Surrounding Land use - Residential/Urban (Binary) 0 1 0 0 Surrounding Land use - Kommercial/Industrial (Binary) 0 0 0 0 0 Surrounding Land use Softm - Freid/Pasture (Binary) 0				
Surounding Land use - Field/Pattere (Binary) 1 0 <td>Disturbance (margin)-%urban</td> <td>0</td> <td>10</td> <td>0</td>	Disturbance (margin)-%urban	0	10	0
Surounding Land use - FieldPasture (Binary) 0 0 0 Surounding Land use - Agriculture (Binary) 0 1 0 Surounding Land use - Loging (Binary) 1 0 0 Surounding Land use - Compact/Adustrial (Binary) 1 0 0 Surounding Land use - Commercial/Industrial (Binary) 1 1 1 Surounding Land use 500m - Ficelential/Uban (Binary) 0 0 0 0 Surounding Land use 500m - Agriculture (Binary) 0 0 0 0 0 Surounding Land use 500m - Agriculture (Binary) 1 1 1 0	Disturbance (margin)-%mining			
Surrounding Land use - Residential/Hohan (Binary) 0 0 0 Surrounding Land use - Residential/Hohan (Binary) 1 0 0 Surrounding Land use - Minang (Binary) 1 0 0 0 Surrounding Land use - Minang (Binary) 1 0				
Surreunding Land use - Loging (Binary) 0 1 0 Surreunding Land use - Mining (Binary) 1 0 0 Surreunding Land use - Mining (Binary) 1 0 0 Surreunding Land use - Commercial/Industrial (Binary) 1 0 0 Surreunding Land use 500m - Forset (Binary) 0 0 0 0 Surreunding Land use 500m - Agriculture (Binary) 0 <td></td> <td>-</td> <td></td> <td></td>		-		
Surounding Land use - Long (Binary) 1 0 0 Surounding Land use - Minng (Binary) 1 1 0 0 Surounding Land use - Minng (Binary) 0		-		
Surounding Land uses - Commercial/Industrial (Binary) 1 0 0 Surounding Land uses - Commercial/Industrial (Binary) 1 1 1 Surounding Land uses 500m - Agriculture (Binary) 0 0 0 Surounding Land uses 500m - Agriculture (Binary) 0 1 0 Surounding Land uses 500m - Nanging (Binary) 1 1 0 Surounding Land uses 500m - Nanging (Binary) 1 0 0 Surounding Land use 500m - Commercial/Industrial (Binary) 1 1 0 Surounding Land use 500m - Commercial/Industrial (Binary) 1 1 1 1 Surounding Land use 500m - Commercial/Industrial (Binary) 1 1 1 1 Disolved organic carbon (mg/L) 1 1 1 1 1 Disolved organic carbon (mg/L) 1 1 1 1 1 Habitats - Marginal Come vg- Normiant 20 10 10 1 Marginal zone vg- Normiant 20 1 1 1 Marginal zone vg- Normiant grass/sedge		-		
Surounding Land use - Commercial/Industrial (Binary) 0 0 0 Surounding Land use 500m - Freid/Pastrue (Binary) 0 0 0 Surounding Land use 500m - Angrid/Pastrue (Binary) 0 0 0 Surounding Land use 500m - Angrid/Pastrue (Binary) 0 0 0 Surrounding Land use 500m - Coping (Binary) 1 1 1 0 Surrounding Land use 500m - Commercial/Industrial (Binary) 1 1 3 5.5 Semeal - Mettered - Conductivity (US/s) 168 5.58 5.65 General - Mettered - Conductivity (US/s) 168 5.58 5.65 General - Mettered - Conductivity (US/s) 1 1 1 1 Habitats - Magning (Binary) 1 1 1 1 1 Habitats - Open water >2m (Binary) 1 1 1 0 Marginal zone veg-% Sorpus 0 50 0 0 Marginal zone veg-% Sorpus 0 1 1 1 Marginal zone veg-% Sorpus 0 0 1				
Surrounding Land uses 500m - Field/Pastruer (Einary) 0 0 0 Surrounding Land uses 500m - Legging (Binary) 0 0 0 Surrounding Land uses 500m - Legging (Binary) 1 1 0 0 Surrounding Land uses 500m - Commercial/Industrial (Binary) 1 1 0 0 0 Surrounding Land uses 500m - Commercial/Industrial (Binary) 1 1 0 0 0 0 Surrounding Land uses 500m - Niming (Binary) 1 1 3 5 5 6		0	0	
Surrounding Land use 500m - Agriculture (Binary) 0 0 0 Surrounding Land use 500m - Residential/Ubban (Binary) 0 1 0 Surrounding Land use 500m - Commercial/Industrial (Binary) 1 0 0 Surrounding Land use 500m - Commercial/Industrial (Binary) 1 1 0 0 Surrounding Land use 500m - Commercial/Industrial (Binary) 1 1 1 0 Surrounding Land use 500m - Commercial/Industrial (Binary) 1 1 1 1 Surrounding Land use 500m - Commercial/Industrial (Binary) 1 1 1 1 Surrounding Land use 500m - Commercial/Industrial (Binary) 1 1 1 1 Habitats - Emergent (Binary) 1 1 1 1 1 Habitats - Submergent (Binary) 1 1 1 0 0 Marginal Zone veg-% Voody (mparian 20 10 10 0 Marginal Zone veg-% Voody (mparian) 20 1 1 1 Marginal Zone veg-% Commant grass/sedge woody/inparian <td< td=""><td>Surrounding Land use 500m - Forest (Binary)</td><td>1</td><td>1</td><td>1</td></td<>	Surrounding Land use 500m - Forest (Binary)	1	1	1
Surounding Land uses 500m - Loging (Binary) 0 1 0 Surounding Land uses 500m - Loging (Binary) 1 1 0 0 Surounding Land uses 500m - Commercial/Industrial (Binary) 1 3.3 5.5 Sorread Metered - Pri (PH) 9.9 6.2 7.5 Brabitat - Marginal (Binary) 1 1 1 1 Habitat - Surging (Binary) 1		-		
Surounding Land use 500m - Logging (Binary) 1 1 1 1 1 1 1 1 1 1 1 0 1 <td></td> <td>-</td> <td></td> <td></td>		-		
Surounding Land use 500m - Mining (Einary) 1 0 0 Dominant Surrounding Land use 500m - Commercial/Industrial (Binary) 1 3.3 5.5 Dissolved organic carbon (mgL) 1 3.3 5.5 General - Metered - Conductivity (US/s) 1688 558 58 General - Metered - Conductivity (US/s) 1 1 1 1 Habitat - Surginal (Binary) 1 1 1 1 1 Habitat - Surginal (Binary) 1 1 1 1 1 1 Habitat - Surginal (Dinary) 1 1 1 1 0 0 5 0 Marginal zone veg % Trypta 0 5 0 0 5 0 </td <td></td> <td>-</td> <td></td> <td></td>		-		
Surounding Land use 500m - Commercial/industrial (Binary) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1				
Dominant Šurounding Land use forest forest forest forest Disavled organic carbon (mg/L) 1 3.3 5.5 General -Metered - pf (pf) 9.9 6.2 7.5 Habitat - Emergent (Binary) 1 1 1 1 Habitat - Surginal (Binary) 1 1 1 1 1 Habitat - Surginal (Binary) 1 1 1 0 0 50 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 50 0 0 50 0 0 50 0 0 50 0 0 1 <td></td> <td></td> <td></td> <td></td>				
Dissolved organic carbon (mg/L) 1 3.3 5.5 General -Metered - Conductivity (uS/s) 168 558 58 General -Metered - PH (pf1) 9.9 6.2 7.5 Habitats - Marginal (Binary) 1 1 1 1 Habitats - Marginal (Binary) 1 1 1 1 1 Habitats - Submergent (Binary) 1 1 1 0 0 Marginal zone veg% Woody riparian 20 10 10 0 Marginal zone veg% Scripus 0 50 00 1 0 </td <td></td> <td>-</td> <td>-</td> <td>-</td>		-	-	-
General - Metered - pH (pH) 9.9 6.2 7.5 Habitats - Marginal (Binary) 1 1 1 Habitats - Submergent (Binary) 1 1 1 1 Habitats - Submergent (Binary) 1 1 1 0 Marginal zone veg-% Woody riparian 20 10 10 Marginal zone veg-% Stripus 0 5 00 Marginal zone veg-% Stripus 0 5 00 Marginal zone veg-% Stripus 0 5 00 Marginal zone veg-% Stripus grass/sedge woody/riparian grass/sedge woody/riparian Beaver activity - absent (Binary) 1 0 0 0 0 Maximum Depth - (m) - 1:2 m (Binary) 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 <	Dissolved organic carbon (mg/L)	1	3.3	5.5
Habitats - Marginal (Binary) 1 1 1 1 Habitats - Emergent (Binary) 1 1 1 0 Habitats - Submergent (Binary) 1 1 0 0 Marginal zone veg-% (Binary) 1 1 0 0 Marginal zone veg-% (Drass/sedge 0 5 0 0 Marginal zone veg-% Crass/sedge 0 5 0				
Habitats - Emergent (Binary) 1 1 1 1 Habitats - Submergent (Binary) 1 1 0 Marginal zone veg-% Woody riparian 20 10 10 Marginal zone veg-% Vorpha 0 5 0 Marginal zone veg-% Scirpus 0 50 0 Marginal zone veg-% Cirpus 0 50 0 Marginal zone veg-% Corpus 0 50 0 Marginal zone veg-Cominant grass/sedge scirpus grass/sedge woody/riparian Beaver activity - present (Binary) 1 0 0 0 0 Maximum Depth - (m) - < 1m (Binary)				
Habitats - Submergent (Binary) 1 1 0 Habitats - Open water >2m (Binary) 1 1 0 Marginal zone veg-% Woody riparian 20 10 10 Marginal zone veg-% Woody riparian 0 5 0 Marginal zone veg-% Scripus 0 50 0 Marginal zone veg-% Grass/sedge 80 35 90 Marginal zone veg- 2m Dominant grass/sedge woody/riparian grass/sedge woody riparian Beaver activity - present (Binary) 1 0 0 1 1 Beaver activity - present (Binary) 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1				
Habitas - Open water >2m (Binary) 1 1 0 Marginal zone veg-% Woody riparian 20 10 10 Marginal zone veg-% Scirpus 0 50 00 Marginal zone veg-% Scirpus 0 50 00 Marginal zone veg-% Crass/sedge 80 35 90 Marginal zone veg-% Crass/sedge scirpus grass/sedge woody/riparian Beaver activity - present (Binary) 1 0 0 0 Maximum Depth - (m) - 12 m (Binary) 0 1 0 0 Maximum Depth - (m) - 2 m (Binary) 0 1 0 0 Maximum Depth - (m) - 2 m (Binary) 0 1 0 0 Maximum Depth - (m) - 2 m (Binary) 0 1 0 0 Quadrat - Mare Are - Emergent 85 70 100 0 Quadrat - % Area - Ebating plants 0 0 1 15 30 1 Quadrat - % Area - Submergent vegataion - Visual 5 1 15 0 0 0				
Marginal zone veg-% Woody riparian 20 10 10 Marginal zone veg-% Sirpus 0 5 0 Marginal zone veg-% Sirpus 0 5 0 Marginal zone veg-% Sirpus 80 35 90 Marginal zone veg-% Sirpus 80 35 90 Marginal zone veg- Dominant grass/sedge scirpus grass/sedge woody/riparian Beaver activity - present (Binary) 1 0 0 1 1 Beaver activity - present (Binary) 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 1<				
Marginal zone veg.% Typha 0 5 0 Marginal zone veg.% Grass/sedge 0 50 0 Marginal zone veg.% Grass/sedge 80 35 90 Marginal zone veg. Dominant grass/sedge scirpus grass/sedge woody riparian Beaver activity - absent (Binary) 1 0 0 1 1 Maximum Depth - (m) - < 1m (Binary)				
Marginal zone veg-% Scirpus 0 50 0 Marginal zone veg-% Grass/sedge 80 35 90 Marginal zone veg- Dominant grass/sedge scirpus grass/sedge woody/riparian 90 Beaver activity - present (Binary) 1 0 0 0 0 Beaver activity - absent (Binary) 0 1 1 0 0 0 Maximum Depth - (m) - 1 m (Binary) 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0				
Marginal zone veg- Dominantgrass/sedgescirpusgrass/sedgeMarginal zone veg- Znd Dominantwoody/ripariangrass/sedgewoody/riparianBeaver activity - present (Binary)100Beaver activity - absent (Binary)011Maximum Depth - (m) - < Tm (Binary)	Marginal zone veg-% Scirpus	0	50	0
Marginal zone veg- 2nd Dominant woody/riparian grass/sedge woody riparian Beaver activity - present (Binary) 1 0 0 Beaver activity - sbesett (Binary) 0 1 1 Maximum Depth - (m) - < 1m (Binary)	Marginal zone veg-% Grass/sedge		35	
Beaver activity - present (Binary) 1 0 0 Beaver activity - absent (Binary) 0 1 1 Maximum Depth - (m) - 12 m (Binary) 0 0 1 Maximum Depth - (m) - 12 m (Binary) 0 0 1 0 Maximum Depth - (m) - 12 m (Binary) 0 1 0 0 Maximum Depth - (m) - 22 m (Binary) 0.177 0.273 0.345 Phosphorus - total (mg/L) 0.056 0.014 0.2 Quadrat - Periphyton (1-5, not slippery to obscured) 1 3.5 1 Quadrat - % Area - Emergent 85 70 100 Quadrat - % Area - Submergent plants 0 0 1 1 Quadrat - % Area - Submergent plants 5 80 0 0 Quadrat - % Area - Submergent vegetation - Visual 10 80 10 1 Site - % Area - Submergent vegetation - Visual 10 80 10 0 0 Site - % Area - Open Water - Visual 0 0 0 0 0 0				
Beaver activity - absent (Binary) 0 1 1 Maximum Depth - (m) - < 1m (Binary)				
Maximum Depth - (m) - < 1m (Binary)				
Maximum Depth - (m) - 1-2 m (Binary) 0 0 1 Maximum Depth - (m) - >2 m (Binary) 0 1 0 1 0 Nitrogen - total (mg/L) 0.177 0.273 0.345 0 1 0.273 0.345 Phosphorus - total (mg/L) 0.056 0.014 0.2 0.2 0.014 0.2 Quadrat - Periphyton (1-5, not slippery to obscured) 1 3.5 1 100 0 1 0.056 0.014 0.2 0.0447 % Area - Emergent 85 70 100 0.0447 % Area - Copen water 15 30 1 1 0.457 100 115 15 15 15 15 15 15 15 15 16 100 100 10 10 10				
Maximum Depth - (m) - >2 m (Binary) 0 1 00 Nitrogen - total (mg/L) 0.177 0.273 0.345 Phosphorus - total (mg/L) 0.056 0.014 0.2 Quadrat - Periphyton (1-5, not slippery to obscured) 1 3.5 1 Quadrat - % Area - Emergent 85 70 100 Quadrat - % Area - Floating plants 0 0 1 Quadrat - % Area - Open water 15 30 1 Quadrat - % Area - Submergent plants 5 80 0 Quadrat - % Area - Submergent plants 5 1 15 Quadrat - % Area - Open Water 10 80 10 Quadrat - % Area - Submergent vegetation - Visual 70 40 90 Site - % Area - Open Water Visual 0 0 0 0 Site - % Area - Open Water Visual 0 0 0 0 Site - % Area - Open Water Visual 0 0 0 0 Site - % Area - Open Water Visual 0 0 0 0				
Nitrogen - total (mg/L) 0.177 0.273 0.345 Phosphorus - total (mg/L) 0.056 0.014 0.2 Quadrat - Periphyton (1-5, not slippery to obscured) 1 3.5 1 Quadrat - % Area - Emergent 85 70 100 Quadrat - % Area - Floating plants 0 0 1 Quadrat - % Area - Chen water 15 30 1 Quadrat - % Area - Submergent plants 5 80 0 Quadrat - % Area - Chengent plants 5 1 15 Quadrat - % Area - Submergent vegetation - Visual 70 40 90 Site - % Area - Submergent vegetation - Visual 0 0 0 0 Site - % Area - Submergent vegetation - Visual 0 0 0 0 0 Site - % Area - Submergent vegetation - Visual 0				
Quadrat - Periphyton (1-5, not slippery to obscured) 1 3.5 1 Quadrat - % Area - Emergent 85 70 100 Quadrat - % Area - Floring plants 0 0 1 Quadrat - % Area - Open water 15 30 1 Quadrat - % Area - Periphyton 0 70 1 Quadrat - % Area - Submergent plants 5 80 0 Quadrat - % Area - Submergent vegetation - Visual 5 1 15 Site - % Area - Submergent vegetation - Visual 70 40 90 Site - % Area - Cherregent vegetation - Visual 0 0 0 0 Site - % Area - Open Water - Visual 0 </td <td>Nitrogen - total (mg/L)</td> <td>0.177</td> <td>0.273</td> <td>0.345</td>	Nitrogen - total (mg/L)	0.177	0.273	0.345
Quadrat - % Area - Emergent 85 70 100 Quadrat - % Area - Floating plants 0 0 1 Quadrat - % Area - Open water 15 30 1 Quadrat - % Area - Submergent plants 5 80 0 Quadrat - % Area - Submergent plants 5 80 0 Quadrat - % Area - Submergent vegetation - Visual 70 40 900 Site - % Area - Submergent vegetation - Visual 70 40 900 Site - % Area - Open Water - Visual 0 0 0 0 Site - % Area - Submergent vegetation - Visual 10 80 10 0 </td <td>Phosphorus - total (mg/L)</td> <td>0.056</td> <td>0.014</td> <td>0.2</td>	Phosphorus - total (mg/L)	0.056	0.014	0.2
Quadrat -% Area - Floating plants 0 0 1 Quadrat - % Area - Open water 15 30 1 Quadrat - % Area - Open water 0 70 1 Quadrat - % Area - Submergent plants 5 80 0 Quadrat - % Area - Submergent plants 5 80 0 Quadrat - % Area - Submergent vegetation - Visual 70 40 90 Site - % Area - Submergent vegetation - Visual 10 80 10 Site - % Area - Open Water - Visual 0 0 0 Site - % Area - Open Water - Visual 0 0 0 0 Site - Average mud flat width (m) at site 1 0 0 0 Site - Average mud flat width (m) at site 1.5 0 0 0 Site - Water level - Vestigal (Binary) 0 <	Quadrat - Periphyton (1-5, not slippery to obscured)			
Quadrat - % Area - Open water 15 30 1 Quadrat - % Bottom Area - Periphyton 0 70 1 Quadrat - % Area - Submergent plants 5 80 0 Quadrat - % Area - Submergent plants 5 1 15 Quadrat - % Area - Submergent vegetation - Visual 5 1 15 Site - % Area - Submergent vegetation - Visual 0 0 0 Site - % Area - Open Water - Visual 0 0 0 0 Site - Area - Open Water - Visual 0				
Quadrat - % Bottom Årea - Periphyton 0 70 1 Quadrat - % Area - Submergent plants 5 80 0 Quadrat - % Area - Submergent plants 5 1 15 State - % Area - Emergent vegetation - Visual 70 40 90 Site - % Area - Submergent vegetation - Visual 70 40 90 Site - % Area - Submergent vegetation - Visual 10 80 10 Site - % Area - Open Water - Visual 0 0 0 0 Site - % Area - Open Water - Visual 10 80 10 0				
Quadrant - % Area - Submergent plants 5 80 0 Quadrat - % Woody debris 5 1 15 Site - % Area - Emergent vegetation - Visual 70 40 90 Site - % Area - Open Water - Visual 10 80 10 Site - % Area - Open Water - Visual 0 0 0 Site - % Area - Open Water - Visual 0 0 0 Site - Avera - Open Water - Visual 0 0 0 Site - Avera - Open Water - Visual 0 0 0 0 Site - Avera - Open Water - Visual 0<				
Quadrat-%Woody debris 5 1 15 Site -% Area -Emergent vegetation -Visual 70 40 90 Site -% Area -Submergent vegetation -Visual 10 80 10 Site -% Area -Open Water - Visual 0 0 0 0 Site -% Area -Open Water - Visual 0				
Site -% Area - Emergent vegetation - Visual 70 40 90 Site -% Area - Submergent vegetation - Visual 10 80 10 Site - & Area - Open Water - Visual 0 0 0 Site - & Area - Open Water - Visual 1 0 0 0 Site - Drawdown mudflat (Binary) at site 1 1 0 0 Site - Water level - Vestigal (Binary) 0 0 0 0 Site - Water level - Vestigal (Binary) 1<				
Site-% Area - Submergent vegetation - Visual 10 80 10 Site-% Area - Open Water - Visual 0				
Site - Drawdown mudflat (Binary) at site 1 0 0 Site - Average mud flat width (m) at site 1.5 0 0 Site - Average mud flat width (m) at site 1.5 0 0 Site - Water level - Vestigal (Binary) 0 0 0 Site - Water level - Recessional (Binary) 1 1 1 Site - Water level - Intermedia (Binary) 0 0 0 Site - Water level - Full flooded (Binary) 0 0 0 Site - Water level - Full flooded (Binary) 0 0 0 Site - Water level - Full flooded (Binary) 0 0 0 Site - Water level - Full flooded (Binary) 0 0 0 Site - Water level - Full flooded (Binary) 0 0 0 Site - Hydrological Type - Palustrine (Binary) 1 1 1 Site - Hydrological Type - Riverine (Binary) 0 1 1 Site - Hydrological Type - Singer Singe		10	80	10
Site - Average mud flat width (m) at site 1.5 0 0 Site - Water level - Vestigal (Binary) 0 0 0 0 Site - Water level - Recessional (Binary) 1 1 1 1 1 Site - Water level - Recessional (Binary) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1<		0	0	0
Site - Water level - Vestigal (Binary) 0 0 0 Site - Water level - Recessional (Binary) 1 1 1 Site - Water level - Intermedia (Binary) 0 0 0 Site - Water level - Intermedia (Binary) 0 0 0 0 Site - Water level - Full flooded (Binary) 0 </td <td></td> <td></td> <td></td> <td></td>				
Site - Water level - Recessional (Binary) 1 1 1 Site - Water level - Intermedia (Binary) 0 0 0 Site - Water level - Full flooded (Binary) 0 0 0 0 Site - Water level - Full flooded (Binary) 0 1				
Site - Water level - Intermedia (Binary) 0 0 0 0 Site - Water level - Full flooded (Binary) 0 1 <td></td> <td></td> <td></td> <td></td>				
Site - Water level - Full flooded (Binary) 0 0 0 Site - Water level - Overflowing (Binary) 0 0 0 0 Site - Hydrological Type - Palustrine (Binary) 0 0 0 0 0 Site - Hydrological Type - Lacustrine (Binary) 1 1 1 1 1 Site - Hydrological Type - Riverine (Binary) 0 1 1 1 1 Site - Hydrological Type - Riverine (Binary) 0 1 1 1 1 Site - Wetland type - Ion (Binary) 0 <td></td> <td></td> <td></td> <td></td>				
Site - Water level - Overflowing (Binary) 0 0 0 0 Site - Hydrological Type - Palustrine (Binary) 0 1				
Site - Hydrological Type - Palustrine (Binary) 0 0 0 Site - Hydrological Type - Lacustrine (Binary) 1 1 1 Site - Hydrological Type - Riverine (Binary) 0 1 1 Site - Hydrological Type - Riverine (Binary) 0 0 0 Site - Hydrological Type - Riverine (Binary) 0 0 0 Site- Wetland type - 5en (Binary) 0 0 0 Site- Wetland type - marsh (Binary) 1 1 1				
Site - Hydrological Type - Lacustrine (Binary) 1 1 1 Site - Hydrological Type - Riverine (Binary) 0 1 1 Site - Hydrological Type - Riverine (Binary) 0 1 1 Site - Wetland type - bog (Binary) 0 0 0 Site- Wetland type - fen (Binary) 0 0 0 Site- Wetland type - marsh (Binary) 1 1 1				
Site - Hydrological Type - Riverine (Binary) 0 1 1 Site - Wetland type - bog (Binary) 0				
Site-Wetland type - bog (Binary) 0 <				
Site- Wetland type - fen (Binary) 0 0 0 0 0 0 0 0 0 0 1 <th1< th=""> 1 1 <</th1<>		0	0	0
		-	-	
Site- Wetland type - swamp (Binary) 0 0 0				
	Site- vvetland type - swamp (Binary)	0	0	0

ite ame	SWAMP SEAT001 - 1 (July 14, 2015) Seaton Cr. Complex Columbia Basin	SWAMP BVL003 (July 29,2015) Beaver Lakes Complex Columbia Basin
ear (2015	
ampleNumber	2013	
ite Status	Test	
atitude	50.02104	50.1138
ongitude	-117.12317	-117.2947
ltitude	1035	
atum	nad83	
coregion	Columbia Mountains	
asin - pond shape -Circular/Ellipse (Binary)	0	
lasin - pond shape - Highly irregular (Binary) lasin - pond shape - Linear (Binary)	1	
lasin - pond shape - Cinear (Dinary) lasin - pond shape - Complex (Binary)	0	
isturbance (wetted area)-%none	0	100
isturbance (wetted area)-%filling	0	(
listurbance (wetted area)-%grazing	0 0	
isturbance (wetted area)-%road	50	(
isturbance (wetted area)-%urban	0	(
isturbance (wetted area)-%mining	50	(
listurbance (margin)-%none	0	100
isturbance (margin)-%filling	0	
isturbance (margin)-%grazing	0	
isturbance (margin)-%road	50	(
listurbance (margin)-%farm yard	0	(
listurbance (margin)-%urban	0	(
listurbance (margin)-%mining	50	(
Surrounding Land use - Forest (Binary)	1	1
urrounding Land use - Field/Pasture (Binary) urrounding Land use - Agriculture (Binary)	0	(
Surrounding Land use - Agriculture (Binary)	0	(
Surrounding Land use - Logging (Binary)	1	(
Surrounding Land use - Mining (Binary)	1	(
surrounding Land use - Comm/Industrial (Binary)	0	, (
Surrounding Land use 500m - Forest (Binary)	1	1
surrounding Land use 500m - Field/Pasture (Binary)	0	(
urrounding Land use 500m - Agriculture (Binary)	0	(
urrounding Land use 500m - Residential/Urban (Binary)	0	(
urrounding Land use 500m - Logging (Binary)	1	(
urrounding Land use 500m - Mining (Binary)	1	
surrounding Land use 500m - Comm/Industrial (Binary)	0	(
3	forest	forest
Seneral -Metered - Conductivity (uS/s)	205	31
Seneral -Metered - pH (pH)	9.4	
labitats - Marginal (Binary) labitats - Emergent (Binary)	1	1
labitats - Submergent (Binary)	1	-
abitats - Open water >2m (Binary)	1	
larginal zone veg-% Woody riparian	25	10
larginal zone veg-% Typha	0	
larginal zone veg-% Scirpus	10	
larginal zone veg-% Grass/sedge	65	90
larginal zone veg- Dominant	grass/sedge	grass/sedge
larginal zone veg- 2nd Dominant	woody/riparian	woody riparian
eaver activity - present (Binary)	1	(
eaver activity - absent (Binary)	0	1
1aximum Depth - (m) - < 1m (Binary)	0	(
1aximum Depth - (m) - 1-2 m (Binary)	0	1
faximum Depth - (m) - >2 m (Binary)	1	(
Quadrat - Periphyton (1-5, not slippery to obscured) Quadrat - % Area - Emergent	1	
Quadrat - % Area - Emergent Quadrat -% Area - Floating plants	80 0	
Quadrat - % Area - Open water	20	
Quadrat - % Bottom Area - Periphyton	20	80
Quadrant - % Area - Submergent plants	1	1
Quadrat- %Woody debris	1	
ite -% Area -Emergent vegetation -Visual	80	95
ite-% Area -Submergent vegetation- Visual	5	5
ite-% Area -Open Water- Visual	15	(
ite - Drawdown mudflat (Binary) at site	0	
ite - Average mud flat width (m) at site	0	
ite - Water level - Vestigal (Binary)	0	
ite - Water level - Recessional (Binary)	1	
ite - Water level - Intermedia (Binary)	0	2.5
	0	
ite - Water level - Full flooded (Binary)	0	1
ite - Water level - Overflowing (Binary)		
ite - Water level - Overflowing (Binary) ite - Hydrological Type - Palustrine (Binary)	0	
ite - Water level - Overflowing (Binary) ite - Hydrological Type - Palustrine (Binary) ite - Hydrological Type - Lacustrine (Binary)	0	
ite - Water level - Overflowing (Binary) ite - Hydrological Type - Palustrine (Binary)	0	

Site Name	SWAMP SEAT001 - 1 (July 14, 2015) Seaton Cr. Complex Columbia Basin	SWAMP SEAT001-2 (August 6, 2015) Seaton Cr. Complex	Beaver Lakes Complex
Basin Year	2015 Columbia Basin	Columbia Basin 2015	Columbia Basin 20
SampleNumber	2015	2015	20
Site_Status	Test	Test	Pot. R
Latitude	50.02104	50.02104	50.11
Longitude	-117.12317	-117.12317	-117.29
Altitude	1035	1035	8
Datum	nad83	nad83	nad
Ecoregion	Columbia Mountains	Columbia Mountains	Columbia Mountai
Basin - pond shape -Circular/Ellipse (Binary)	0	0	
Basin - pond shape - Highly irregular (Binary)	1	1	
Basin - pond shape - Linear (Binary)	0	0	
Basin - pond shape - Complex (Binary)	0	0	
Disturbance (wetted area)-%none	0	0	1
Disturbance (wetted area)-%filling	0	0	
Disturbance (wetted area)-%grazing	0	0	
Disturbance (wetted area)-%road	50	50	
Disturbance (wetted area)-%urban	0	0	
Disturbance (wetted area)-%mining	50	50	
Disturbance (margin)-%none	0	0	1
Disturbance (margin)-%filling	0	0	
Disturbance (margin)-%grazing	0	0	
Disturbance (margin)-%road	50	50	
Disturbance (margin)-%farm yard	0	0	
Disturbance (margin)-%urban	0	0	
Disturbance (margin)-%mining	50	50	
Surrounding Land use - Forest (Binary)	1	1	
Surrounding Land use - Field/Pasture (Binary)	0	0	
Surrounding Land use - Agriculture (Binary)	0	0	
Surrounding Land use - Residential/Urban (Binary)	0	0	
Surrounding Land use - Logging (Binary)	1	1	
Surrounding Land use - Mining (Binary)	1	1	
Surrounding Land use - Comm/Industrial (Binary)	0	0	
Surrounding Land use 500m - Forest (Binary)	1	1	
Surrounding Land use 500m - Field/Pasture (Binary)	0	0	
Surrounding Land use 500m - Agriculture (Binary)	0	0	
Surrounding Land use 500m - Residential/Urban (Binary)	0	0	
Surrounding Land use 500m - Logging (Binary)	1	1	
Surrounding Land use 500m - Mining (Binary)	1 0	1	
Surrounding Land use 500m - Comm/Industrial (Binary)	forest	•	6
Dominant Surrounding Land use General -Metered - Conductivity (uS/s)	205	forest 205	forest
General -Metered - pH (pH)	9.4	205	
Habitats - Marginal (Binary)	5.4	5.4	
Habitats - Emergent (Binary)	1	1	
Habitats - Submergent (Binary)	1	1	
Habitats - Open water >2m (Binary)	1	1	
Varginal zone veg-% Woody riparian	25	25	
Varginal zone veg-% Typha	23	23	
Varginal zone veg-% Scirpus	10	10	
Varginal zone veg-% Grass/sedge	65	65	
	grass/sedge	grass/sedge	grass/sedge
5 5	woody/riparian	woody/riparian	woody riparian
Beaver activity - present (Binary)	1	1	
Beaver activity - absent (Binary)	0	0	
Maximum Depth - (m) - < 1m (Binary)	Ő	Ő	
Maximum Depth - (m) - 1-2 m (Binary)	0	0	
Maximum Depth - (m) - >2 m (Binary)	1	1	
Quadrat - Periphyton (1-5, not slippery to obscured)	1	1	
Quadrat - % Area - Emergent	80	80	
Quadrat -% Area - Floating plants	0	0	
Quadrat - % Area - Open water	20	20	
Quadrat - % Bottom Area - Periphyton	0	0	
Quadrant - % Area - Submergent plants	1	1	
Quadrat- %Woody debris	1	1	
Site -% Area -Emergent vegetation -Visual	80	80	
Site-% Area -Submergent vegetation- Visual	5	5	
Site-% Area -Open Water- Visual	15	15	
Site - Drawdown mudflat (Binary) at site	0	0	
Site - Average mud flat width (m) at site	0	0	
Site - Water level - Vestigal (Binary)	0	0	
Site - Water level - Recessional (Binary)	1	1	
Site - Water level - Intermedia (Binary)	0	0	
	0	0	
Site - Water level - Full flooded (Binary)	0	0	
Site - Water level - Full flooded (Binary) Site - Water level - Overflowing (Binary)		0	
	0	0	
Site - Water level - Overflowing (Binary)	0	0	
Site - Water level - Overflowing (Binary) Site - Hydrological Type - Palustrine (Binary)		-	
Site - Water level - Overflowing (Binarý) Site - Hydrological Type - Palustrine (Binary) Site - Hydrological Type - Lacustrine (Binary)	0	0	

Study Site Name	Ryan's Fen	SWAMP WIN001 (June 30,2015) Winlaw woodlot	Winlaw woodlot
Basin	Columbia Basin	Columbia Basin	Columbia Basin
Year	2015		
SampleNumber	1	1	2
Site_Status Latitude	Pot. Ref. 49.2826		Pot. Ref 49.36279
Lande	-117.3934		-117.30562
Altitude	1571		
Datum	nad83		
Ecoregion	Columbia Mountains	Columbia Mountains	Columbia Mountains
Basin - pond shape -Circular/Ellipse (Binary)	0	0	0
Basin - pond shape - Highly irregular (Binary)	1		1
Basin - pond shape - Linear (Binary)	0		
Basin - pond shape - Complex (Binary)	1		
Disturbance (wetted area)-%none	100		
Disturbance (wetted area)-%filling	0		-
Disturbance (wetted area)-%grazing Disturbance (wetted area)-%road	0		-
Disturbance (wetted area)-%urban	0	-	-
Disturbance (wetted area)-%mining	Ő	-	-
Disturbance (margin)-%none	90	90	
Disturbance (margin)-%filling	0		0
Disturbance (margin)-%grazing	0		0
Disturbance (margin)-%road	10		-
Disturbance (margin)-%farm yard	0		-
Disturbance (margin)-%urban	0		-
Disturbance (margin)-%mining	0		-
Surrounding Land use - Forest (Binary)	1		
Surrounding Land use - Field/Pasture (Binary) Surrounding Land use - Agriculture (Binary)	0		-
Surrounding Land use - Agriculture (Binary) Surrounding Land use - Residential/Urban (Binary)	0		-
Surrounding Land use - Logging (Binary)	0		
Surrounding Land use - Mining (Binary)	Ő		
Surrounding Land use - Comm/Industrial (Binary)	0		
Surrounding Land use 500m - Forest (Binary)	1	1	1
Surrounding Land use 500m - Field/Pasture (Binary)	0	0	0
Surrounding Land use 500m - Agriculture (Binary)	0		
Surrounding Land use 500m - Residential/Urban (Binary)	0		-
Surrounding Land use 500m - Logging (Binary)	0		
Surrounding Land use 500m - Mining (Binary)	0		-
Surrounding Land use 500m - Comm/Industrial (Binary) Dominant Surrounding Land use	forest	forest	0 forest
General -Metered - Conductivity (uS/s)	18		
General -Metered - pH (pH)	7.5		8.3
Habitats - Marginal (Binary)	1		
Habitats - Emergent (Binary)	1	1	1
Habitats -Submergent (Binary)	1	1	0
Habitats - Open water >2m (Binary)	1		
Marginal zone veg-% Woody riparian	20		
Marginal zone veg-% Typha	0		
Marginal zone veg-% Scirpus	0		-
Marginal zone veg-% Grass/sedge	80		
Marginal zone veg- Dominant Marginal zone veg- 2nd Dominant	grass/sedge woody/riparian	woody.riparian grass/sedge	woody/riparian grass/sedge
Beaver activity - present (Binary)	0 0000		
Beaver activity - absent (Binary)	1		
Maximum Depth - (m) - < 1m (Binary)	Ö		1
Maximum Depth - (m) - 1-2 m (Binary)	1		
Maximum Depth - (m) - >2 m (Binary)	0		
Quadrat - Periphyton (1-5, not slippery to obscured)	1		
Quadrat - % Area - Emergent	30		
Quadrat -% Area - Floating plants	15		
Quadrat - % Area - Open water	55		
Quadrat - % Bottom Area - Periphyton	0		
Quadrant - % Area - Submergent plants	30		
Quadrat- %Woody debris Site -% Area -Emergent vegetation -Visual	0 25		
Site -% Area -Emergent vegetation - Visual Site-% Area -Submergent vegetation- Visual	75		
Site-% Area -Submergent vegetation- visual Site-% Area -Open Water- Visual	0		
Site - Drawdown mudflat (Binary) at site	1		
Site - Average mud flat width (m) at site	1		7.5
Site - Water level - Vestigal (Binary)	, o		
Site - Water level - Recessional (Binary)	1		
Site - Water level - Intermedia (Binary)	0		
Site - Water level - Full flooded (Binary)	0		0
Site - Water level - Overflowing (Binary)	0	0	0
Site - Hydrological Type - Palustrine (Binary)	1		
Site - Hydrological Type - Lacustrine (Binary)	0		-
Site - Hydrological Type - Riverine (Binary)	0		-
Site- Wetland type - bog (Binary) Site- Wetland type - fen (Binary)	0		

10.3 Appendix 3: Laboratory analysed water quality data

Analyte	Units	MRL	F0001	WIN001	WIN002	GC001	GC002	CL001	HAY001
			6-Jul-15	06-Jul-15	6-Jul-15	9-Jul-15	9-Jul-15	9-Jul-15	14-Jul-15
Chloride	mg/L	0.1	76.9	1.28	1.77	<0.10	2.29	<0.10	3.7
Nitrate as N	mg/L	0.01	0.02	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Nitrite as N	mg/L	0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Sulfate	mg/L	1	<1.0	<1.0	<1.0	1	5.2	<1.0	3.7
Carbon, Total Organic	% dry	0.05	23.4	14.8	34.8	22.5	18.8	22.2	12.6
Alkalinity, Total as CaCO3	mg/L		175	87	27	17.1	13.7	13.7	44.5
Carbon, Dissolved Organic	mg/L	0.5	11.8	18.4	35	3.2	6.1	4	9
Ammonia as N, Total	mg/L	0.02	0.066	0.048	0.042	0.034	0.022	<0.020	0.041
Nitrogen, Total Kjeldahl	mg/L	0.05	1.78	1.08	10.5	0.35	0.73	0.38	0.76
Phosphorus, Total as P	mg/L	0.002	0.129	0.037	0.82	0.011	0.047	0.007	0.101
Phosphorus, Total Dissolved	mg/L	0.002	0.021	0.037	0.115	0.008	0.013	0.004	0.027
Solids, Total Suspended	mg/L	2	14	<3	186	<2	18	<2	<2
Turbidity	NTU		4.9	2	47.4	0.65	1.5	0.55	1.8
pH	pH units		7.85	7.58	6.97	6.5	6.5	6.7	6.9
Conductivity (EC)	uS/cm		620	165	61	16.9	8.6	16.4	99.6
Hardness, Total (Total as CaCO3)	mg/L	5	204	86.7	33.8	<5.0	<5.0	<5.0	51.6
Nitrate+Nitrite as N	mg/L	0.01	0.02	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Nitrogen, Total	mg/L	0.05	1.8	1.08	10.5	0.35	0.728	0.375	0.755
Nitrogen, Organic	mg/L	0.05	1.71	1.03	10.5	0.316	0.706	0.375	0.714
>75 μm	% dry	0.05	16.3	11.03	13.5	23.1	17.5	33.4	28
Classification	% dry	0.1	Fine	Fine	Fine	Fine	Fine	Fine	Fine
		0.05							
Aluminum, total	mg/L	0.05	<0.05	0.09	1.43	0.11	0.15	0.17	<0.05
Antimony, total	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenic, total	mg/L	0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005
Barium, total	mg/L	0.05	0.13	0.13	0.07	< 0.05	<0.05	<0.05	< 0.05
Beryllium, total	mg/L	0.001	< 0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.001
Bismuth, total	mg/L	0.001	< 0.001	< 0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.001
Boron, total	mg/L	0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Cadmium, total	mg/L	0.0001	<0.0001	<0.0001	0.0002	0.0002	0.0001	0.0002	< 0.0001
Calcium, total	mg/L	2	55.4	23.5	10.4	<2.0	<2.0	<2.0	15.2
Chromium, total	mg/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cobalt, total	mg/L	0.0005	0.0009	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Copper, total	mg/L	0.002	<0.002	<0.002	0.008	<0.002	<0.002	<0.002	<0.002
Iron, total	mg/L	0.1	1.25	0.19	1.03	0.21	0.35	<0.10	1.17
Lead, total	mg/L	0.001	<0.001	<0.001	0.004	0.001	0.004	0.001	<0.001
Lithium, total	mg/L	0.001	0.01	<0.001	0.002	<0.001	<0.001	<0.001	0.001
Magnesium, total	mg/L	0.1	15.9	6.8	1.9	0.3	0.1	0.4	3.3
Manganese, total	mg/L	0.002	0.5	0.01	0.037	0.015	0.011	0.011	0.066
Molybdenum, total	mg/L	0.001	<0.001	0.001	0.001	<0.001	<0.001	<0.001	<0.001
Nickel, total	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Phosphorus, total	mg/L	0.2	0.3	0.2	0.8	<0.2	<0.2	<0.2	<0.2
Potassium, total	mg/L	0.2	5.1	1.5	1.1	0.3	<0.2	0.3	0.2
Selenium, total	mg/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon, total	mg/L	5	9	<5	<5	<5	<5	<5	<5
Silver, total	mg/L	0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Sodium, total	mg/L	0.2	46.5	1.9	2.9	0.8	0.7	0.5	2.3
Strontium, total	mg/L	0.01	0.52	0.4	0.38	0.04	0.01	0.02	0.15
Sulfur, total	mg/L	10	<10	<10	<10	<10	15	18	13
Tellurium, total	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Thallium, total	mg/L	0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Thorium, total	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Tin, total	mg/L	0.002	<0.002	<0.002	< 0.002	<0.002	<0.002	< 0.002	<0.002
	mg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Titanium, totai									
Titanium, total Uranium, total	mg/L	0.0002	0.0002	0.0004	0.0007	<0.0002	< 0.0002	<0.0002	<0.0002

Nitrate as NmNitrite as NmSulfatemCarbon, Total Organic%Alkalinity, Total as CaCO3mCarbon, Dissolved OrganicmAmmonia as N, TotalmNitrogen, Total KjeldahlmPhosphorus, Total DissolvedmSolids, Total SuspendedmTurbidityNTPHpHConductivity (EC)uSHardness, Total (Total as CaCO3)mNitrogen, OrganicmNitrogen, TotalmNitrogen, TotalmNitrogen, TotalmNitrogen, OrganicmAluminum, totalmAntimony, totalmBarium, totalmBismuth, totalmBoron, totalmCadmium, totalmCadmium, totalmCadmium, totalmBismuth, totalmCadmium, totalmCadmium, totalmCadmium, totalmCadmium, totalmCadmium, totalmCadmium, totalmCadmium, totalmCalcium, totalmCadmium, totalm	g/L g/L g/L g/L dry	0.1 0.01 0.01	14-Jul-15 0.42 <0.010	14-Jul-15 2.44	15-Jul-15 0.51	14-Jul-15 0.34		19-Jul-15	21-Jul-15
Nitrate as NmNitrite as NmSulfatemCarbon, Total Organic%Alkalinity, Total as CaCO3mCarbon, Dissolved OrganicmAmmonia as N, TotalmNitrogen, Total KjeldahlmPhosphorus, Total DissolvedmSolids, Total SuspendedmTurbidityNTPHpHConductivity (EC)uSHardness, Total (Total as CaCO3)mNitrogen, OrganicmNitrogen, TotalmNitrogen, TotalmNitrogen, TotalmNitrogen, OrganicmAluminum, totalmAntimony, totalmBarium, totalmBismuth, totalmBoron, totalmCadmium, totalmCadmium, totalmCadmium, totalmBismuth, totalmCadmium, totalmCadmium, totalmCadmium, totalmCalcium, totalmCadmium, totalmCadmium, totalmCadmium, totalmCalcium, totalmCadmium, totalmCadmium, totalmCalcium, totalmCalcium, totalmCalcium, totalmCalcium, totalmCalcium, totalmCalcium, totalmCalcium, totalmCalcium, totalmCalcium, totalm <th>g/L g/L g/L dry</th> <th>0.01 0.01</th> <th></th> <th>2.44</th> <th>0.51</th> <th>0.34</th> <th>10.10</th> <th></th> <th></th>	g/L g/L g/L dry	0.01 0.01		2.44	0.51	0.34	10.10		
Nitrite as NmSulfatemCarbon, Total Organic%Alkalinity, Total as CaCO3mCarbon, Dissolved OrganicmAmmonia as N, TotalmNitrogen, Total KjeldahlmPhosphorus, Total DissolvedmSolids, Total SuspendedmTurbidityNPHpHConductivity (EC)uSHardness, Total (Total as CaCO3)mNitrogen, OrganicmNitrogen, OrganicmNitrogen, OrganicmAluminum, totalmAntimony, totalmBarium, totalmBarium, totalmBismuth, totalmCadmium, totalmCadmium, totalmBismuth, totalmCadmium, totalmCalcium, totalmCadmium, totalmCadmium, totalmCalcium, totalmCalcium, totalmCalcium, totalmCalcium, totalmCalcium, totalmCalcium, totalmCalcium, totalmCalcium, totalmCalcium, totalm<	g/L g/L dry	0.01	<0.010		0.01	0.34	<0.10	1.08	4.65
SulfatemCarbon, Total Organic%Alkalinity, Total as CaCO3mCarbon, Dissolved OrganicmAmmonia as N, TotalmNitrogen, Total KjeldahlmPhosphorus, Total as PmPhosphorus, Total DissolvedmSolids, Total SuspendedmTurbidityNTPHpConductivity (EC)uSHardness, Total (Total as CaCO3)mNitrogen, OrganicmNitrogen, OrganicmNitrogen, OrganicmAntimony, totalmAluminum, totalmArsenic, totalmBarium, totalmBismuth, totalmBoron, totalmCadmium, totalmCadmium, totalmCadmium, totalmBoron, totalmCalcium, totalmCalcium, totalmCalcium, totalmCadmium, totalmCadmium, totalmCadmium, totalmCadmium, totalmCalcium, totalmCadmium, totalmCalcium, totalmCasting Calcium, totalmCalcium, t	g/L dry		-01010	<0.010	0.053	<0.010	0.01	0.018	<0.010
Carbon, Total Organic % Alkalinity, Total as CaCO3 m, Carbon, Dissolved Organic m, Ammonia as N, Total m, Nitrogen, Total Kjeldahl m, Phosphorus, Total Dissolved m, Solids, Total Suspended m, Turbidity NT pH pł Conductivity (EC) uS Hardness, Total (Total as CaCO3) m, Nitrate+Nitrite as N m, Nitrogen, Total m, Nitrogen, Organic m, > 75 µm % Classification % Aluminum, total m, Antimony, total m, Barium, total m, Beryllium, total m, Boron, total m, Cadmium, total m, Cadmium, total m,	dry		<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Alkalinity, Total as CaCO3m.Carbon, Dissolved Organicm.Ammonia as N, Totalm.Nitrogen, Total Kjeldahlm.Phosphorus, Total as Pm.Phosphorus, Total Dissolvedm.Solids, Total Suspendedm.TurbidityNTPHpHConductivity (EC)uSHardness, Total (Total as CaCO3)m.Nitrogen, Organicm.> 75 µm%Classificationm.Antimony, totalm.Barium, totalm.Barium, totalm.Boron, totalm.Cadmium, totalm.Boron, totalm.Cadmium, totalm.Cadmium, totalm.Boron, totalm.Cadmium, totalm.Cadmium, totalm.Cadmium, totalm.Calcium, totalm.Calcium, totalm.Calcium, totalm.Calcium, totalm.Calcium, totalm.Calcium, totalm.		1	4.8	1.6	12.6	11.1	2.6	10.8	79.3
Carbon, Dissolved Organicm.Ammonia as N, Totalm.Nitrogen, Total Kjeldahlm.Phosphorus, Total as Pm.Phosphorus, Total Dissolvedm.Solids, Total Suspendedm.TurbidityNTPHpHConductivity (EC)uSHardness, Total (Total as CaCO3)m.Nitrate+Nitrite as Nm.Nitrogen, Organicm.> 75 µm%Classificationm.Antimony, totalm.Barium, totalm.Beryllium, totalm.Boron, totalm.Cadmium, totalm.Cadmium, totalm.Boron, totalm.Cadmium, totalm.Cadmium, totalm.Cadmium, totalm.Cadmium, totalm.Cadmium, totalm.Calcium, totalm.Calcium, totalm.Calcium, totalm.Calcium, totalm.		0.05	3.85	5.03	9.59	16.5	5.32	14.9	43.3
Ammonia as N, TotalmNitrogen, Total KjeldahlmPhosphorus, Total as PmPhosphorus, Total DissolvedmSolids, Total SuspendedmTurbidityNTpHpHConductivity (EC)uSHardness, Total (Total as CaCO3)mNitrate+Nitrite as NmNitrogen, Organicm> 75 µm%ClassificationmAntimony, totalmBarium, totalmBeryllium, totalmBoron, totalmCadmium, totalmCadmium, totalmBismuth, totalmCadmium, totalmCadmium, totalmCadmium, totalmCadmium, totalmCadmium, totalmCadmium, totalmCadmium, totalmCalcium, totalmCalcium, totalm	g/L		47.9	95.8	102.6	88.9	16	61.5	184.7
Nitrogen, Total Kjeldahlm.Phosphorus, Total as Pm.Phosphorus, Total Dissolvedm.Solids, Total Suspendedm.TurbidityNTpHpHConductivity (EC)uSHardness, Total (Total as CaCO3)m.Nitrate+Nitrite as Nm.Nitrogen, Totalm.Nitrogen, Organicm.> 75 µm%Classificationm.Antimony, totalm.Barium, totalm.Beryllium, totalm.Boron, totalm.Cadmium, totalm.Cadmium, totalm.Boron, totalm.Calcium, totalm.Calcium, totalm.Calcium, totalm.	g/L	0.5	3.5	10.6	0.7	1	1.6	2.6	3.3
Phosphorus, Total as Pm.Phosphorus, Total Dissolvedm.Solids, Total Suspendedm.TurbidityNTpHpHConductivity (EC)uSHardness, Total (Total as CaCO3)m.Nitrate+Nitrite as Nm.Nitrogen, Totalm.Nitrogen, Organicm.> 75 µm%Classification%Aluminum, totalm.Barium, totalm.Bismuth, totalm.Boron, totalm.Cadmium, totalm.Cadmium, totalm.Boron, totalm.Calcium, totalm.Calcium, totalm.Calcium, totalm.Calcium, totalm.Calcium, totalm.Calcium, totalm.Calcium, totalm.Calcium, totalm.	g/L	0.02	0.043	0.041	<0.020	0.031	0.031	0.025	0.027
Phosphorus, Total Dissolvedm.Solids, Total Suspendedm.TurbidityNTpHpHConductivity (EC)uSHardness, Total (Total as CaCO3)m.Nitrate+Nitrite as Nm.Nitrogen, Totalm.Nitrogen, Organicm.> 75 µm%Classification%Aluminum, totalm.Arsenic, totalm.Barium, totalm.Bismuth, totalm.Boron, totalm.Cadmium, totalm.Cadmium, totalm.Boron, totalm.Calcium, totalm.Calcium, totalm.	g/L	0.05	0.7	0.77	<0.05	0.18	0.07	0.97	0.27
Solids, Total Suspendedm.TurbidityNTpHpHConductivity (EC)uSHardness, Total (Total as CaCO3)m.Nitrate+Nitrite as Nm.Nitrogen, Totalm.Nitrogen, Organicm.> 75 µm%Classification%Aluminum, totalm.Arsenic, totalm.Barium, totalm.Bismuth, totalm.Boron, totalm.Cadmium, totalm.Cadmium, totalm.Boron, totalm.Calcium, totalm.Calcium, totalm.Calcium, totalm.Calcium, totalm.	g/L	0.002	0.044	0.031	0.007	0.056	0.009	0.035	0.014
TurbidityNpHpHConductivity (EC)uSHardness, Total (Total as CaCO3)mNitrate+Nitrite as NmNitrogen, TotalmNitrogen, Organicm> 75 µm%Classification%Aluminum, totalmArsenic, totalmBarium, totalmBismuth, totalmBoron, totalmCadmium, totalmMartinony, totalmMartinony, totalmMartinony, totalmClassificationmAntimony, totalmBarium, totalmBismuth, totalmBoron, totalmCalcium, totalmCalcium, totalmCalcium, totalmCalcium, totalm	g/L	0.002	0.014	0.012	0.004	0.022	0.004	0.016	0.009
pHpHConductivity (EC)uSHardness, Total (Total as CaCO3)mNitrate+Nitrite as NmNitrogen, TotalmNitrogen, Organicm> 75 µm%Classification%Aluminum, totalmAntimony, totalmBarium, totalmBismuth, totalmBoron, totalmCadmium, totalmBoron, totalmCadmium, totalmCadmium, totalmCadmium, totalmCalcium, totalmCalcium, totalm	g/L	2	9	4	<2	42	<2	3	8
Conductivity (EC)USHardness, Total (Total as CaCO3)mNitrate+Nitrite as NmNitrogen, TotalmNitrogen, Organicm> 75 µm%Classification%Aluminum, totalmAntimony, totalmBarium, totalmBeryllium, totalmBoron, totalmCadmium, totalmCadmium, totalmMartinon, totalmMartinon, totalmClassificationmAntimony, totalmBarium, totalmBoron, totalmCadmium, totalmCalcium, totalm	ΓU		13	1.7	1.3	15	1.8	2	0.5
Hardness, Total (Total as CaCO3)m,Nitrate+Nitrite as Nm,Nitrogen, Totalm,Nitrogen, Organicm,> 75 µm%Classification%Aluminum, totalm,Antimony, totalm,Barium, totalm,Beryllium, totalm,Bismuth, totalm,Boron, totalm,Cadmium, totalm,Cadmium, totalm,Boron, totalm,Cadmium, totalm,Calcium, totalm,	l units		7.2	7.5	7.8	8.2	7.32	7.3	8
Nitrate+Nitrite as NmNitrogen, TotalmNitrogen, Organicm> 75 µm%Classification%Aluminum, totalmAntimony, totalmArsenic, totalmBarium, totalmBeryllium, totalmBismuth, totalmClassificationmClassificationmClassificationmClassificationmClassificationmCadmium, totalmCalcium, totalm	/cm		79.9	173	201	169	38	143	431
Nitrogen, TotalmNitrogen, Organicm> 75 µm%Classification%Aluminum, totalmAntimony, totalmArsenic, totalmBarium, totalmBeryllium, totalmBismuth, totalmBoron, totalmCadmium, totalmCadmium, totalmCadmium, totalm	g/L	5	41	92.8	113	95.7	17	78	261
Nitrogen, Organicm> 75 μm%Classification%Aluminum, totalmAntimony, totalmArsenic, totalmBarium, totalmBeryllium, totalmBismuth, totalmBoron, totalmCadmium, totalmCadmium, totalmCalcium, totalm	g/L	0.01	<0.010	<0.010	0.053	<0.010	0.01	0.018	<0.010
Nitrogen, Organicm> 75 μm%Classification%Aluminum, totalmAntimony, totalmArsenic, totalmBarium, totalmBeryllium, totalmBismuth, totalmBoron, totalmCadmium, totalmCadmium, totalmCalcium, totalm	g/L	0.05	0.697	0.766	0.053	0.177	0.078	0.989	0.273
Classification%Aluminum, totalmAntimony, totalmArsenic, totalmBarium, totalmBeryllium, totalmBismuth, totalmBoron, totalmCadmium, totalmCalcium, totalm	g/L	0.05	0.654	0.725	<0.050	0.146	<0.050	0.946	0.246
Aluminum, totalmAntimony, totalmArsenic, totalmBarium, totalmBeryllium, totalmBismuth, totalmBoron, totalmCadmium, totalmCalcium, totalm	dry	0.1	44.6	10	49.9	29.6	44.7	40.5	70
Antimony, totalmArsenic, totalmBarium, totalmBeryllium, totalmBismuth, totalmCadmium, totalmCalcium, totalm	dry		Fine	Fine	Fine	Fine	Fine	Fine	Coarse
Antimony, totalmArsenic, totalmBarium, totalmBeryllium, totalmBismuth, totalmCadmium, totalmCalcium, totalm	, g/L	0.05	0.07	0.09	<0.05	0.41	0.08	0.08	<0.05
Arsenic, totalmBarium, totalmBeryllium, totalmBismuth, totalmBoron, totalmCadmium, totalmCalcium, totalm	g/L	0.001		< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001
Barium, totalmBeryllium, totalmBismuth, totalmBoron, totalmCadmium, totalmCalcium, totalm	g/L	0.005		< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005
Beryllium, totalmBismuth, totalmBoron, totalmCadmium, totalmCalcium, totalm	g/L	0.05	<0.05	0.07	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bismuth, total m Boron, total m Cadmium, total m Calcium, total m	g/L	0.001		<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Boron, total m Cadmium, total m Calcium, total m	g/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium, total m Calcium, total m	g/L	0.04	<0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Calcium, total m	g/L	0.0001		< 0.0001	0.0002	0.0002	< 0.0001	< 0.0001	< 0.0001
	g/L	2		26.6	33.8	26	6	26.6	68.8
	в/ – g/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cobalt, total m	g/L	0.0005	0.001	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.005
	в/ – g/L	0.002		<0.002	<0.002	0.002	<0.002	<0.002	<0.002
	в/ – g/L	0.1	5.56	0.38	0.24	0.92	0.2	0.25	<0.10
	в/ – g/L	0.001		<0.001	0.002	0.002	<0.001	<0.001	<0.001
	в/ – g/L	0.001	0.001	0.001	0.001	0.001	<0.001	<0.001	0.003
	в/ – g/L	0.001	2.2	6.4	7	7.5	0.5	2.8	21.7
-	g/L	0.002	0.605	0.053	0.048	0.029	0.008	0.09	0.029
-	g/L	0.002	0.002	0.002	0.048	0.025	<0.008	<0.001	<0.025
	g/L	0.001		<0.002	<0.001	0.002	<0.001	<0.001	<0.001
	g/L	0.002	<0.002	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	g/L	0.2		2	<0.2	<0.2	0.5	0.8	0.2
	g/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005 7
	g/L a/i	0.0005							
	g/L ~/I			<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0005
	g/L ~/I	0.2	1.7	4.2	1.8	1.4	0.8	2.6	7.2
	g/L	0.01	0.19	0.39	0.23	0.22	0.02	0.33	0.62
	g/L - /I	10	16	13	<10	15	<10	<10	<10
	g/L	0.002		< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002
	g/L		< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	<0.0002
	g/L	0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	g/L	0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
	g/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	g/L	0.0002		0.0011	0.0003	0.0004	<0.0002	<0.0002	0.0007
Vanadium, total m	g/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Analyte	Units	MRL	LWL001	BVL002	BVL003	SEAT003-1	SEAT003-2	SUM002	TY001
			29-Jul-15	29-Jul-15	29-Jul-15	6-Aug-15	6-Aug-15	21-Jul-15	14-Jul-15
Chloride	mg/L	0.1	2.44	4.97	5.24	0.45	0.44	1.25	1.41
Nitrate as N	mg/L	0.01	0.12	0.105	0.086	0.015	0.021	<0.010	<0.010
Nitrite as N	mg/L	0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Sulfate	mg/L	1	2.4	<1.0	1	28.8	29	11.2	18.5
Carbon, Total Organic	% dry	0.05	8.3	19	26.8	13	12.1	8.6	2.46
Alkalinity, Total as CaCO3	mg/L		27.36	27.36	20.52	116.28	123.12	68.4	109
Carbon, Dissolved Organic	mg/L	0.5	1.2	5.5	9.6	<0.5	<0.5	3	3.6
Ammonia as N, Total	mg/L	0.02	<0.020	0.031	0.033	0.024	<0.020	<0.020	<0.020
Nitrogen, Total Kjeldahl	mg/L	0.05	<0.05	0.24	0.93	0.06	<0.05	0.34	0.29
Phosphorus, Total as P	mg/L	0.002	0.016	0.02	0.026	0.025	0.02	0.021	0.022
Phosphorus, Total Dissolved	mg/L	0.002	0.006	0.009	0.017	0.003	0.002	0.014	0.011
Solids, Total Suspended	mg/L	2	4	11	4	9	6	2	<2
Turbidity	NTU		0.55	0.4	1.8	1.8	1	0.9	1.1
рН	pH units		7.25	6.9	6.73	7.88	7.9	7.7	8.1
Conductivity (EC)	uS/cm		55.5	54.2	38.9	227.2	235	137	246
Hardness, Total (Total as CaCO3)	mg/L	5	24.4	27.5	18.7	168	155	77	128
Nitrate+Nitrite as N	mg/L	0.01	0.12	0.105	0.086	0.015	0.021	<0.010	<0.010
Nitrogen, Total	mg/L	0.05	0.12	0.345	1.02	0.076	<0.050	0.336	0.294
Nitrogen, Organic	mg/L	0.05	<0.050	0.209	0.901	<0.050	<0.050	0.336	0.294
> 75 μm	% dry	0.1	27.6	27.8	25.3	14	28	82.9	81.9
Classification	% dry		Fine	Fine	Fine	Fine	Fine	Coarse	Coarse
Aluminum, total	mg/L	0.05	<0.05	<0.05	0.11	0.06	<0.05	< 0.05	<0.05
Antimony, total	mg/L	0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001	<0.001	<0.001
Arsenic, total	mg/L	0.005	<0.005	<0.005	<0.005	0.021	0.01	<0.005	<0.005
Barium, total	mg/L	0.05		0.09	0.07	<0.05	<0.05	<0.05	0.06
Beryllium, total	mg/L	0.001		<0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001
Bismuth, total	mg/L	0.001		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Boron, total	mg/L	0.04		<0.04	<0.04	<0.04	<0.04	< 0.04	<0.04
Cadmium, total	mg/L		< 0.0001	< 0.0001	< 0.0001	0.0011	0.0004	< 0.0001	< 0.0001
Calcium, total	mg/L	2		9.9	6.3	45.3	43.3	26.2	36.6
Chromium, total	mg/L	0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cobalt, total	mg/L	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005
Copper, total	mg/L	0.002		< 0.002	< 0.002	0.006	0.002	<0.002	< 0.002
Iron, total	mg/L	0.1		<0.10	0.38	1.56	0.6	0.29	0.14
Lead, total	mg/L	0.001		< 0.001	< 0.001	0.017	0.005	< 0.001	< 0.001
Lithium, total	mg/L	0.001		0.001	0.001	0.001	0.001	< 0.001	0.004
Magnesium, total	mg/L	0.1		0.6	0.7	13.2	11.4	2.8	9
Manganese, total	mg/L	0.002		0.003	0.05	0.197	0.1	0.073	0.024
Molybdenum, total	mg/L	0.001		< 0.001	0.001	0.003	0.003	< 0.001	0.002
Nickel, total	mg/L	0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Phosphorus, total	mg/L	0.2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Potassium, total	mg/L	0.2		<0.2	<0.2	<0.2	<0.2	0.4	2.5
Selenium, total	mg/L	0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon, total	mg/L	5		<5	<5	<5	<5	<5	7
Silver, total	mg/L	0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Sodium, total	mg/L	0.2		0.8	0.5	2.2	1.9	2.6	5.2
Strontium, total	mg/L	0.2		0.8	0.43	0.3	0.26	0.33	0.2
Sulfur, total	mg/L	10		<10	<10	13	<10	<10	13
Tellurium, total	mg/L	0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
	-		<0.002						
Thallium, total	mg/L			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002 <0.001
Thorium, total	mg/L	0.001		<0.001	<0.001	<0.001	<0.001	< 0.001	
Tin, total	mg/L	0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium, total	mg/L	0.05		<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
Uranium, total	mg/L		<0.0002	<0.0002	<0.0002	0.001	0.0009	0.0002	0.0007
Vanadium, total	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Analysed by CARO Analytical S	ervices								

				1	1		
Site Description	Date Collected	Conductivity @ 25C	Turbidity	Total Acidity	Alkalinity	Hardness	pН
		uS/cm	NTU's	mg/l	mg/l	mg/I CaCO3	
BON001	July 21, 2015	431	0.5	2.3	184.7	156	8
BON001-F	July 21, 2015	1	0.2	4.6	27.4	<10.4	8.1
SUM002	July 21, 2015	137	0.9	4.6	68.4	52	7.7
SUM001	July 21, 2015	143	2	6.8	61.5	52	7.3
FRA001	July 13, 2015	79.9	13	2.3	47.9	31.2	7.2
SEAT001	July 14, 2015	201	1.3	2.3	102.6	62.4	7.8
LS002	July 15, 2015	36.7	2.1	2.3	20.5	10.4	7.5
BEAR001	July 14, 2015	169	15	2.3	88.9	52	8.2
BL002	July 29, 2015	54.2	0.4	4.56	27.36	20.8	6.9
BL003	July 29, 2015	38.9	1.8	6.84	20.52	10.4	6.73
LWL001	July 29, 2015	55.5	0.55	6.84	27.36	20.8	7.25
SEAT003-1	August 6, 2015	227.2	1.8	25.08	116.28	104	7.88
SEAT003-2	August 6, 2015	235	1	25.08	123.12	72.8	7.9
SEAT004-1	August 6, 2015	225.2	0.2	22.8	116.28	83.2	8.06
SEAT004-2	August 6, 2015		0.35	22.8	116.28	83.2	8.03
SEAT003-f	August 6, 2015	2.2	0.2	4.56	6.84	<10.4	6.06

Analyzed by Passmore Laboratories Ltd. F denotes a blank, -1 or -2 indicates duplicates

Analyte	Units	MRL	PASS001	SEAT002	LSL001	BVL001
			25-Aug-14	26-Aug-14	27-Aug-14	8-Sep-14
Alkalinity, Total as CaCO3	mg/L		27.4	147	51.3	68.4
Carbon, Dissolved Organic	mg/L	0.5	5.12	4.61	5.18	1.93
Ammonia as N, Total	mg/L	0.02				
Nitrogen, Total Kjeldahl	mg/L	0.05	0.351	0.149	0.204	0.199
Phosphorus, Total as P	mg/L	0.002	0.0118	<0.0050	<0.0050	<0.0050
Turbidity	NTU		4.8	0.45	0.85	0.5
рН	pH units		7.2	7.3	6.7	6.9
Conductivity (EC)	uS/cm		94.6	305.3	31.4	68.6
Hardness, Total (Total as CaCO3)	mg/L	5	17.1	154	34.2	34.2
Sulfur, total	mg/L	10	4.29	31.1	1.48	4.45

Analysed by Maxxam Analytics

Analyte	Units	MRL	F0001	WIN001	WIN002	GC001	GC002	CL001	HAY001
			6-Jul-15	06-Jul-15	6-Jul-15	9-Jul-15	9-Jul-15	9-Jul-15	14-Jul-15
Aluminum	mg/kg dr	20	10500	16100	7920	18300	14600	11400	10200
Antimony	mg/kg dr	0.1	1.3	0.2	0.9	1	4.4	4.8	1.3
Arsenic	mg/kg dr	0.4	3	2.7	1.4	2.2	4.2	5.9	2.2
Barium	mg/kg dr	1	286	840	183	89	100	69	161
Beryllium	mg/kg dr	0.1	0.6	1.5	0.5	0.7	0.5	0.4	0.4
Bismuth	mg/kg dr	0.1	0.4	0.5	0.2	0.2	0.4	0.5	0.2
Boron	mg/kg dr	2	5	<2	<2	<2	<2	<2	<2
Cadmium	mg/kg dr	0.04	1.77	0.38	0.89	1.83	5.82	7.29	2.12
Calcium	mg/kg dr	100	12900	17100	11200	2220	1040	3740	6510
Chromium	mg/kg dr	1	28.8	14.3	7.5	9.9	5.9	5.1	22.8
Cobalt	mg/kg dr	0.1	4.1	2.1	1.2	2.9	1.2	2.2	3.8
Copper	mg/kg dr	0.2	18.8	61	22.7	9.1	19.6	9.9	14.4
Iron	mg/kg dr	20	11000	10400	3660	5950	3980	2790	11100
Lead	mg/kg dr	0.2	41.9	7.4	20.6	33.8	61.3	204	85.8
Lithium	mg/kg dr	0.1	16	11.2	3.5	6.5	3.4	1.9	12
Magnesium	mg/kg dr	10	4320	1630	807	1870	581	791	3640
Manganese	mg/kg dr	0.4	203	60.4	50.4	60.1	40.8	40.2	166
Mercury	mg/kg dr	0.05	0.08	0.08	0.1	<0.05	0.06	0.11	0.11
Molybdenum	mg/kg dr	0.1	2.7	2.4	1.4	0.7	0.5	0.7	1
Nickel	mg/kg dr	0.4	17	16.1	7.8	7.5	4.2	6.5	14.6
Phosphorus	mg/kg dr	10	824	1090	993	639	486	545	828
Potassium	mg/kg dr	10	836	323	314	278	354	360	1070
Selenium	mg/kg dr	0.5	2.3	1.5	0.9	0.5	<0.5	0.7	0.9
Silicon	mg/kg dr	3000	<3000	<3000	<3000	<3000	<3000	3980	<3000
Silver	mg/kg dr	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Sodium	mg/kg dr	40	559	279	141	170	236	127	178
Strontium	mg/kg dr	0.2	182	344	419	34.2	17.6	46.5	92.4
Sulfur	mg/kg dr	1000	3000	2200	3400	1900	<1000	3400	<1000
Tellurium	mg/kg dr	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Thallium	mg/kg dr	0.1	0.1	<0.1	<0.1	0.1	0.2	0.1	0.3
Thorium	mg/kg dr	0.5	3	2.8	<0.5	0.5	<0.5	<0.5	3.4
Tin	mg/kg dr	0.2	0.7	0.5	0.4	0.7	1.3	1.5	1.5
Titanium	mg/kg dr	2	319	138	89	443	521	151	623
Uranium	mg/kg dr	0.1	8.3	33.2	3.3	1.9	1.2	1.4	7.1
Vanadium	mg/kg dr	0.4	22.8	18.5	10.5	17.6	15.6	7.6	24.1
Zinc	mg/kg dr	2	118	15	33	63	48	173	111
Zirconium	mg/kg dr	2	3	11	<2	4	3	<2	<2

10.4 Appendix 4: Laboratory analysed sediment quality data

Analyte	Units	MRL	FRA001	ELD001	SEAT001	BEAR001	LSL002	SUM001	BON001
			14-Jul-15	14-Jul-15	15-Jul-15	14-Jul-15	15-Jul-15	19-Jul-15	21-Jul-15
Aluminum	mg/kg dry	20	8390	14700	585	9710	15300	13200	1070
Antimony	mg/kg dry	0.1	0.3	0.9	2.5	2.8	0.2	1.2	1.1
Arsenic	mg/kg dry	0.4	3.9	4.4	2560	10.4	1.1	5.9	3
Barium	mg/kg dry	1	114	277	17	52	157	197	30
Beryllium	mg/kg dry	0.1	0.5	0.8	<0.1	0.3	0.7	1	<0.1
Bismuth	mg/kg dry	0.1	0.3	0.4	15.6	0.4	0.1	0.1	0.2
Boron	mg/kg dry	2	<2	<2	<2	<2	<2	<2	24
Cadmium	mg/kg dry	0.04	2.46	5.53	92.6	4.44	0.51	2.77	2.36
Calcium	mg/kg dry	100	2700	6380	89100	9300	4530	9890	58700
Chromium	mg/kg dry	1	17.3	38.9	6.2	29.7	38.5	35.7	3.1
Cobalt	mg/kg dry	0.1	5.3	8.2	6.3	11	7.2	6.2	0.8
Copper	mg/kg dry	0.2	10.4	37.3	145	45.9	16.4	34.1	5.7
Iron	mg/kg dry	20	17100	21500	154000	19800	20400	16200	2160
Lead	mg/kg dry	0.2	16.2	48.3	773	71.3	10.4	32.1	71.4
Lithium	mg/kg dry	0.1	20.7	23.9	1.2	10.4	13.1	15.6	1
Magnesium	mg/kg dry	10	4410	7760	34300	5160	6090	5800	3320
Manganese	mg/kg dry	0.4	242	410	7750	187	170	310	153
Mercury	mg/kg dry	0.05	< 0.05	0.08	0.08	0.11	<0.05	0.11	0.1
Molybdenum	mg/kg dry	0.1	1.4	1.4	6.8	3.4	1.7	2.4	8.1
Nickel	mg/kg dry	0.4	12.8	29.9	28.8	47.9	22.8	22.9	3.5
Phosphorus	mg/kg dry	10	733	915	711	606	692	751	1110
Potassium	mg/kg dry	10	1240	1730	76	432	3710	567	137
Selenium	mg/kg dry	0.5	0.5	2	8.1	11.3	0.8	13.5	10.5
Silicon	mg/kg dry	3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000
Silver	mg/kg dry	0.2	<0.2	0.5	9.8	1.4	<0.2	0.2	<0.2
Sodium	mg/kg dry	40	103	265	<40	106	442	138	187
Strontium	mg/kg dry	0.2	44	156	183	76.9	26.4	217	239
Sulfur	mg/kg dry	1000	<1000	<1000	110000	2100	<1000	4200	18000
Tellurium	mg/kg dry	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Thallium	mg/kg dry	0.1	0.2	0.3	<0.1	0.1	0.3	0.2	<0.1
Thorium	mg/kg dry	0.5	9.4	11	0.9	3.6	6.1	3	<0.5
Tin	mg/kg dry	0.2	0.8	1.2	38.9	1.4	0.9	0.9	0.8
Titanium	mg/kg dry	2	696	759	14	125	1580	575	30
Uranium	mg/kg dry	0.1	6.6	9	5.3	5.7	9.5	5	2.6
Vanadium	mg/kg dry	0.4	29.3	43.9	9	23	47.9	41.1	3
Zinc	mg/kg dry	2	248	494	12400	275	73	148	41
Zirconium	mg/kg dry	2	<2	<2	<2	3	<2	2	<2

Analyte	Units M	/IRL	LWL001	BVL002	BVL003	SEAT003-1	SEAT003-2	SUM002	TY001
			29-Jul-15	29-Jul-15	29-Jul-15	6-Aug-15	6-Aug-15	21-Jul-15	14-Jul-15
Aluminum	mg/kg dry	20	11600	8430	9530	1840	2280	4600	3670
Antimony	mg/kg dry	0.1	0.3	0.4	1	2	2.3	0.4	<0.1
Arsenic	mg/kg dry	0.4	<0.4	0.6	1.2	1770	1810	1.3	1.5
Barium	mg/kg dry	1	285	351	267	27	32	82	64
Beryllium	mg/kg dry	0.1	0.7	1.9	1.5	0.2	0.2	0.8	0.2
Bismuth	mg/kg dry	0.1	<0.1	<0.1	0.2	12.6	12.7	<0.1	<0.1
Boron	mg/kg dry	2	<2	<2	<2	<2	<2	3	<2
Cadmium	mg/kg dry	0.04	0.15	0.95	1.45	67.8	74.1	0.61	0.42
Calcium	mg/kg dry	100	4400	9510	5230	86800	77700	9990	1450
Chromium	mg/kg dry	1	34.5	29.1	23.5	11.1	11.7	11.7	5.8
Cobalt	mg/kg dry	0.1	4.7	1.3	1.8	4.1	4.5	2.1	2.8
Copper	mg/kg dry	0.2	13.9	11.4	12.7	238	245	12.7	3.7
Iron	mg/kg dry	20	13600	3950	3350	98700	100000	7150	8510
Lead	mg/kg dry	0.2	7	16.5	36.7	983	955	10.4	5.9
Lithium	mg/kg dry	0.1	11.9	7.8	5.1	2.7	3.3	5.7	11.5
Magnesium	mg/kg dry	10	4490	1120	1140	38600	34700	2320	2230
Manganese	mg/kg dry	0.4	183	101	84.4	6540	6030	101	136
Mercury	mg/kg dry	0.05	<0.05	0.11	0.08	0.08	0.09	<0.05	<0.05
Molybdenum	mg/kg dry	0.1	0.2	0.4	0.8	6.1	8.8	1.5	0.7
Nickel	mg/kg dry	0.4	16.6	7.7	9.9	27.2	32.5	10.9	5.9
Phosphorus	mg/kg dry	10	385	1070	493	1190	1190	546	282
Potassium	mg/kg dry	10	1180	533	289	246	305	460	669
Selenium	mg/kg dry	0.5	<0.5	0.9	1	15.3	18.3	5.3	<0.5
Silicon	mg/kg dry	3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000
Silver	mg/kg dry	0.2	<0.2	<0.2	<0.2	8.3	8.4	<0.2	<0.2
Sodium	mg/kg dry	40	95	115	111	51	60	128	51
Strontium	mg/kg dry	0.2	923	965	658	191	174	255	33.9
Sulfur	mg/kg dry	1000	<1000	3100	2800	44000	42000	4700	<1000
Tellurium	mg/kg dry	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Thallium	mg/kg dry	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
Thorium	mg/kg dry	0.5	1.4	<0.5	<0.5	1.4	1.3	1.3	4.6
Tin	mg/kg dry	0.2	0.9	0.7	0.6	30.2	30.2	0.8	0.4
Titanium	mg/kg dry	2	899	61	131	29	30	315	340
Uranium	mg/kg dry	0.1	2.4	23.8	10.5	6.3	6.8	3.8	1.2
Vanadium	mg/kg dry	0.4	30.8	9.7	22.3	12.1	12.4	19.9	12.3
Zinc	mg/kg dry	2	63	56	77	9310	10200	45	118
Zirconium	mg/kg dry	2	<2	<2	<2	<2	<2	<2	<2

Analysed by CARO Analytical Services, SEAT003-1 and SEAT003-2 are duplicates.

Analyte	Units	MRL	PASS001	SEAT002	LSL001	BVL001
			25-Aug-14	26-Aug-14	27-Aug-14	8-Sep-14
Aluminum	mg/kg dry	/ 20	9910	6170	8510	4640
Antimony	mg/kg dry	/ 0.1	3.04	6.86	0.13	0.26
Arsenic	mg/kg dry	/ 0.4	4.33	1400	1.24	1.03
Barium	mg/kg dry	/ 1	119	33.5	108	176
Beryllium	mg/kg dry	/ 0.1	0.44	<0.40	<0.40	2.99
Bismuth	mg/kg dry	0.1	0.24	6.66	<0.10	<0.10
Cadmium	mg/kg dry	0.04	1.73	55.2	0.198	0.82
Calcium	mg/kg dry	/ 100	4420	26000	4020	4870
Chromium	mg/kg dry	/ 1	14.6	22.9	24.8	19.2
Cobalt	mg/kg dry	0.1	2.98	8.34	4.23	1.33
Copper	mg/kg dry	0.2	5.77	103	7.86	6.97
Iron	mg/kg dry	/ 20	9720	98700	10200	3140
Lead	mg/kg dry	0.2	77.4	1080	7.44	12.2
Lithium	mg/kg dry	, 0.1	24.5	10.3	5.9	<5.0
Magnesium	mg/kg dry	/ 10	2910	17000	4400	742
Manganese	mg/kg dry	/ 0.4	149	2630	101	50.7
Mercury	mg/kg dry	0.05	0.058	0.075	<0.050	0.055
Molybdenum	mg/kg dry	, 0.1	0.75	15.9	0.62	0.19
Nickel	mg/kg dry	/ 0.4	10.4	50.7	10.3	7.96
Phosphorus	mg/kg dry	/ 10	394	1040	668	408
Potassium	mg/kg dry	/ 10	492	352	1580	227
Selenium	mg/kg dry	/ 0.5	0.54	21.1	<0.50	0.68
Silver	mg/kg dry	/ 0.2	0.109	18.7	<0.050	<0.050
Sodium	mg/kg dry	/ 40	118	<100	140	125
Strontium	mg/kg dry	/ 0.2	41.1	105	30.4	468
Thallium	mg/kg dry	/ 0.1	0.141	0.095	0.171	<0.050
Tin	mg/kg dry	/ 0.2	0.98	16.8	0.64	0.29
Titanium	mg/kg dry	/ 2	609	135	1170	149
Uranium	mg/kg dry	, 0.1	2.64	5.09	1.6	37.9
Vanadium	mg/kg dry	/ 0.4	20.4	18.8	26.5	19.7
Zinc	mg/kg dry	/ 2	79.2	6910	44.3	34.7
Zirconium	mg/kg dry	/ 2	1.2	1.9	0.75	0.5

Analysed by Maxxam Analytics

					Water		
Analyte	Units	BC WQG Max Aq Life	BC WQG 30-day	BC WQG Wildlife	BC Drinking WQG Max	WQ CCME Short term	WQ CCME Long term
Chloride	mg/L	600	150	600	250	64	0 120
Nitrate as N	mg/L	32.8	3	100	10	55	50 13
Nitrite as N	mg/L	0.06 when Cl ≤ 2, 0.12 when Cl 2- 4, 0.6 when Cl >10	0.02 when $Cl^{-} \le 2,$ 0.04 when $Cl^{-} 2 - 4,$ 0.2 when $Cl^{-} > 10$	10	1	E	50
Sulfate	mg/L	100 1	Sulfate calc ¹		500		
Alkalinity, Total as CaCO ₃	mg/L		<10 when Ca2+<4, 10-20 when Ca2+ 4-8, >20 when Ca2+ >82				
Ammonia-N	mg/L	3.62 - 23.8 temp & pH			None		-23.8 • & pH
рН	pH units	6.5-9.0					
Nitrate+Nitrite	mg/L				10		
Aluminum, total (diss)	mg/L	0.1)		5 (total)	0.2		рН <6.5 <i>,</i> рН>6.5
Antimony	mg/L	0.009 (Sb III only) ¹					
Arsenic, total	mg/L	.,	0.005	0.025 ²	0.025	0.0	005
Barium, total	mg/L		1				
Beryllium, total	mg/L		0.13				
Boron, total	mg/L		1.2	5	5	29	1.5
Cadmium, total	mg/L	Cd calc ²	Cd calc ³			0.001	0.00009
Chromium, total	mg/L		0.009 (III),	0.001 (VI)			
Cobalt, total	mg/L	0.11	0.004				
Copper, total	mg/L	Cu Calc⁴	$\leq 2_{hardness \leq 50}$ Cu Calc ⁵ if Hardness ≥ 50	300		Cu	Calc ⁶
Iron, total	mg/L	1				0	.3

10.5 Appendix 5: Water quality guidelines

¹Sulphate 128mg/L if hardness(0-3), 218 if hardness=(31-75), 309 if hardness=(76-180), 49 if hardness=(181-250)

 $^{2}WQG Cd(mg/L) = e^{[1.03 \times ln(hardness^{**}) - 5.274]}/1000$, short-term max

 $^{3}WQG Cd(mg/L) = e^{[0.736 \times ln(hardness^{*}) - 4.943]}/1000$, long-term average

⁴WQG Cu (mg/L)≤ (0.094 hardness(mg/L) + 2)/1000

⁵WQG Cu (mg/L) ≤ 0.04 (mean hardness)/1000

⁶When the water hardness is 0 to < 82 mg/L, the WQG is 0.002 mg/L, At hardness \geq 82 to \leq 180 mg/L, WQG (mg/L) =(0.2 * e^{{0.8545[in(hardness]-1.465]})/1000, At hardness >180 mg/L, the WQG is 0.004 mg/L

Lead, totalMax Aq Life mg/L30-day Pb Calc7Wildlife S2Hardness 50 Pb Calc8WQG MaxShort term Long Pb Calc9Manganese, totalmg/LPb Calc10Mn Calc11Pb Calc9Pb Calc9Manganese, totalmg/LMn Calc10Mn Calc11Framess 50 Pb Calc9Framess	CCME g term
Lead, total Max Aq Life 30-day Wildlife WQG Max Short term Long Lead, total mg/L Pb Calc ⁷ \$2Hardness \$50 Pb Calc ⁸ Pb Calc ⁹ Pb Calc ⁹ Manganese, total mg/L Mn Calc ¹⁰ Mn Calc ¹¹ Free Calc ⁹ Pb Calc ⁹ Molybdenum, total mg/L 2 <1 0.05 0.73 Nickel, total mg/L 0.025 Hardness 0-60mg/L 0.110 >60 Ni Calc ¹² Ni Calc ¹² Phosphorus, total mg/L 0.005- 0.015 for lakes Ni Calc ¹² Potassium, total mg/L 0.001 (alert) 0.002 0.002 0.01 mg/L 0.001 (alert) 0.002 0.01 (water), 0.01	
Manganese, total mg/L Mn Calc ¹⁰ Mn Calc ¹¹ Molybdenum, total mg/L 2 <1 0.05 0.73 Nickel, total mg/L 2 <1 0.05 0.73 Nickel, total mg/L 0.025 Hardness Ni Calc ¹² Nickel, total mg/L 0.025 Hardness Ni Calc ¹² Nickel, total mg/L 0.025 Hardness Ni Calc ¹² 0-60mg/L 0.110 >60 si80mg/L Ni Calc ¹² 0-60mg/L 0.110 >60 si80mg/L Ni Calc ¹² Phosphorus, total mg/L 0.005- 0.015 for lakes Ni Col15 for lakes Iakes Iakes Iakes Potassium, total 0.001 (alert) 0.002 0.001 (water),	
total mg/L 2 <1 0.05 0.73 Nickel, total mg/L 2 0.025 Hardness Ni Calc ¹² 0.60mg/L 0.110 >60 - Ni Calc ¹² 0.60mg/L 0.110 >60 - - 1000pL 0.150 - - 1000pL 0.005- - - 0.015 for - - - 1000pL 0.015 for - - 0.015 for - - - 1000pL - - - 0.015 for - - - 10kes - - - Potassium, total mg/L - - - Selenium, total 0.001 (alert) 0.002 0.001 (water), -	
total Nickel, total mg/L 0.025 Hardness 0.60mg/L 0.110 >60 Ni Calc ¹² P60mg/L 0.110 >60 0.011 0 >60 \$180mg/L 0.150 \$180mg/L 0.150 Phosphorus, total mg/L 0.005- 0.015 for lakes \$180mg/L 0.015 for Potassium, total mg/L 0.0015 for lakes \$180mg/L 0.012 \$0.002 \$0.01	
Phosphorus, total mg/L 0.005- 0.015 for lakes Image: Constraint of the second seco	
Phosphorus, total mg/L 0.005- 0.015 for lakes Potassium, total mg/L 0.001 (alert) 0.001 (alert) 0.002 0.012 selenium, total mg/L 0.001 (alert) 0.002 0.002 0.01	
Potassium, total mg/L	
total 0.002 (water),	
0.006 (bird egg)	
Silver, total mg/L 0.0001 _{Hardness} 0.0015 \$100mg/L Hardness 0.0003_{>100mg/L} \$100mg/L \$100mg/L \$100mg/L \$100mg/L \$100mg/L \$100mg/L \$100mg/L	
Thallium, total mg/L 0.008 13 0.0008	
Uranium, total mg/L 0.033	0.015
Zinc, total mg/L 0.0075 _{Hardness} 0.033 _{Hardn} 0.03 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	

Water quality guidelines (continued)

⁷WQG Pb (mg/L) $\leq e^{[1.273 \ln (hardness^*) - 1.460]}/1000$

 8 WQG Pb (mg/L) $\leq 3.31 + e^{[1.273 ln (hardness^{*}) - 4.704]}/1000$

⁹When hardness is 0 to \leq 60 mg/L, the WQG is 0.001 mg/L, At hardness >60 to \leq 180 mg/L WQG (mg/L)= (e^{(1.273[in(hardness)]-4.705]})/1000, At hardness >180 mg/L, the CWQG is 0.007 mg/L

 10 WQG Mn (mg/L) \leq 0.01102 hardness+ 0.54/1000

¹¹WQG Mn (mg/L)≤ 0.0044 hardness + 0.605/1000

¹²When the water hardness is 0 to \leq 60 mg/L, the WQG is 0.025 mg/L ,At hardness > 60 to \leq 180 mg/L WQG Ni (mg/L)=(e^{[0.76[in(hardness)]+1.06]})/1000 At hardness >180 mg/L, the WQG is 0.150 mg/L

¹³30-day average, WQ objective for the lower Columbia River

 14 WQG Zn (mg/L) \leq 33 + 0.75(hardness - 90)/1000

¹⁵WQG Zn (mg/L)≤ 7.5 + 0.75 (hardness - 90))/1000

			Sedii	ment	
Analyte	Units	BC SQ ISQG	BC SQ PEL	CCME ISQG	CCME PEL
Arsenic	mg/kg dry	5.9	17		
Cadmium	mg/kg dry	0.6	3.5	0.6	3.5
Chromium	mg/kg dry	37.3	90	37.3	90
Cobalt	mg/kg dry				
Copper	mg/kg dry	35.7	197	35.7	197
Iron	mg/kg dry	21,200	43,766		
Lead	mg/kg dry	35	91.3	35	91.3
Magnesium	mg/kg dry				
Manganese	mg/kg dry	460	1100		
Mercury	mg/kg dry	0.17	0.486		
Nickel	mg/kg dry	16	75		
Selenium	mg/kg dry	2			
Silver	mg/kg dry	0.5			
Zinc	mg/kg dry	123	325	123	315

10.6 Appendix 6: Sediment quality guidelines

Site	% of parameters exceeding guidelines	Exceedance (source*)			
F0001	3.4	Iron (aq. Life CCME and WQG)			
WIN001	3.4	Zinc (aq. Life CCME and WQG*)			
WIN002	17.24	Aluminum (aq. Life CCME and WQG)			
		Iron (aq. Life CCME and WQG)			
		Copper (aq. Life CCME)			
		Zinc (aq. Life CCME and WQG*)			
GC001	6.8	Aluminum (aq. Life CCME and WQG)			
		Zinc (aq. Life CCME and WQG*)			
GC002	13.79	Aluminum (aq. Life CCME and WQG)			
		Iron (aq. Life CCME and WQG)			
		Zinc (aq. Life CCME and WQG*)			
CL001	6.8	Aluminum (aq. Life CCME and WQG)			
		Zinc (aq. Life CCME and WQG*)			
HAY001	6.8	Iron (aq. Life CCME and WQG)			
		Zinc (aq. Life CCME and WQG*)			
TY001	0	none			
FRA001	6.8	Iron (aq. Life CCME and WQG)			
		Zinc (aq. Life CCME and WQG*)			
ELD001	3.4	Iron (aq. Life CCME and WQG*)			
BEAR001	3.4	Iron (aq. Life CCME and WQG*)			
SEAT001	3.4	Zinc (aq. Life CCME and WQG*)			
LSL002	3.4	Zinc (aq. Life CCME and WQG*)			
SUM001	3.4	Zinc (aq. Life CCME and WQG*)			
BON001	3.4	Cobalt (aq. Life WQG*)			
SUM002	3.4	Zinc (aq. Life CCME and WQG*)			
LWL001	3.4	Zinc (aq. Life CCME and WQG*)			
BVL002	3.4	Zinc (aq. Life CCME and WQG*)			
BVL003	10.34	Aluminum (aq. Life CCME and WQG)			
		Iron (aq. Life CCME and WQG*)			
SE A TOO 2	10.24	Zinc (aq. Life CCME and WQG*)			
SEAT003	10.34	Arsenic (aq. Life CCME and WQG*, WQGwild, BCdw)			
		Iron (aq. Life CCME and WQG*)			
		Zinc (aq. Life CCME and WQG*)			
		Lead (aq. Life CCME)			
Sources	aq. Life CCME= Canadian Water Quality				
	aq. Life CCME*= Canadian Water Quality Guidelines long term				
	aq. Life WQG = BC Water Quality Guide				
	aq. Life WQG* = BC Water Quality Guidelines long term WQGwild = BC Water Quality Guidelines for wildlife				
	-				
	BCdw = BC Drinking Water Guidelines				

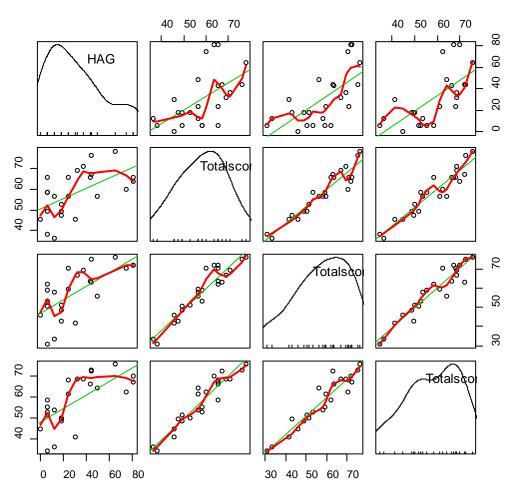
10.7 Appendix 7: Water quality parameters exceeding guidelines

Site	% of parameters exceeding guidelines	Exceedance (source*)
PASS001	16.6	Cadmium (aq. Life ISQG CCME)
		Lead (aq. Life ISQG CCME)
SEAT002	83.3	Arsenic (aq. Life ISGQ and PEL CCME)
		Cadmium (aq. Life ISGQ and PEL CCME)
		Copper (aq. Life ISQG CCME)
		Iron (aq. Life ISGQ and PEL CCME)
		Lead (aq. Life ISGQ and PEL CCME)
		Manganese (aq. Life ISGQ and PEL)
		Nickel (aq. Life ISQG)
		Silver (aq. Life ISQG)
		Selenium (aq. Life ISQG)
		Zinc (aq. Life ISGQ and PEL CCME)
LSL001	8.3	Cadmium (aq. Life ISQG CCME)
BVL001	8.3	Cadmium (aq. Life ISQG CCME)
F0001	33	Cadmium (aq. Life ISQG CCME)
		Lead (aq. Life ISQG CCME)
		Nickel (aq. Life ISQG and PEL)
		Selenium (aq. Life ISQG)
WIN001	8.3	Nickel (aq. Life ISQG)
WIN002	8.3	Cadmium (aq. Life ISQG CCME)
GC001	8.3	Cadmium (aq. Life ISQG CCME)
GC002	16.6	Cadmium (aq. Life ISGQ and PEL CCME)
		Lead (aq. Life ISQG CCME)
CL001	25	Cadmium (aq. Life ISGQ and PEL CCME)
		Lead (aq. Life ISQG and PEL CCME)
		Zinc (aq. Life ISGQ CCME)
HAY001	16.6	Cadmium (aq. Life ISQG CCME)
		Lead (aq. Life ISQG CCME)
FRA001	16.6	Cadmium (aq. Life ISQG CCME)
		Zinc (aq. Life ISGQ CCME)
ELD001	66	Cadmium (aq. Life ISGQ and PEL CCME)
		Chromium (aq. Life ISQG CCME)
		Copper (aq. Life ISQG CCME)
		Iron (aq. Life ISQG CCME)
		Lead (aq. Life ISQG CCME)
		Nickel (aq. Life ISQG)
		Silver (aq. Life ISQG)
		Zinc (aq. Life ISGQ and PEL CCME)
LWL001	8.3	Nickel (aq. Life ISQG)
BVL002	8.3	Cadmium (aq. Life ISQG CCME)
Source:	aq. Life (ISQG or PEL) = BC Sediment Qu	ality Guidelines

10.8 Appendix 8: Sediment quality parameters exceeding guidelines

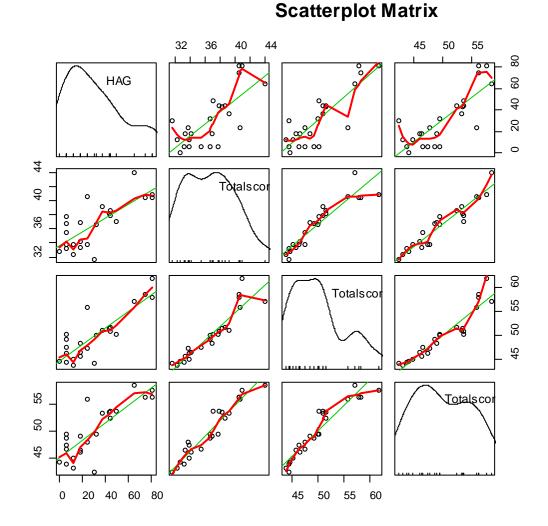
SWAMP: Wetland Invertebrate Assessment Tool

Site	% of parameters exceeding	ng guidelines Exceedance (source*)
BEAR001	58.3	Cadmium (aq. Life ISGQ and PEL CCME)
		Copper (aq. Life ISQG CCME)
		Lead (aq. Life ISQG CCME)
		Nickel (aq. Life ISQG)
		Silver (aq. Life ISQG)
		Selenium (aq. Life ISQG)
		Zinc (aq. Life ISGQ CCME)
SEAT001	83.3	Arsenic (aq. Life ISGQ and PEL CCME)
		Cadmium (aq. Life ISGQ and PEL CCME)
		Copper (aq. Life ISQG CCME)
		Iron (aq. Life ISGQ and PEL CCME)
		Lead (aq. Life ISGQ and PEL CCME)
		Manganese (aq. Life ISGQ and PEL)
		Nickel (aq. Life ISQG)
		Silver (aq. Life ISQG)
		Selenium (aq. Life ISQG)
		Zinc (aq. Life ISGQ and PEL CCME)
LSL002	16.6	Chromium (aq. Life ISQG CCME)
		Nickel (aq. Life ISQG)
SUM001	41.6	Arsenic (aq. Life ISGQ CCME)
		Cadmium (aq. Life ISQG CCME)
		Nickel (aq. Life ISQG)
		Selenium (aq. Life ISQG)
		Zinc (aq. Life ISGQ CCME)
BON001	25	Cadmium (aq. Life ISQG CCME)
		Lead (aq. Life ISGQ CCME)
		Selenium (aq. Life ISQG)
SUM002	16.6	Cadmium (aq. Life ISQG CCME)
		Selenium (aq. Life ISQG)
BVL003	16.6	Cadmium (aq. Life ISQG CCME)
		Lead (aq. Life ISGQ CCME)
SEAT003	83.3	Arsenic (aq. Life ISGQ and PEL CCME)
		Cadmium (aq. Life ISGQ and PEL CCME)
		Copper (aq. Life ISQG CCME)
		Iron (aq. Life ISGQ and PEL CCME)
		Lead (aq. Life ISGQ and PEL CCME)
		Manganese (aq. Life ISGQ and PEL)
		Nickel (aq. Life ISQG)
		Silver (aq. Life ISQG)
		Selenium (aq. Life ISQG)
		Zinc (aq. Life ISGQ and PEL CCME)
Source:	aq. Life (ISQG or PEL) =	BC Sediment Quality Guidelines


Sediment quality parameters exceeding guidelines (continued)

10.9 Appendix 9: Quality control, duplicate values that triggered alerts.

Sample Id Date	Matrix	Lab	Analyte	Units	MRL	5XMRL	Duplicate	Duplicate	RPD	RPD limit
SEAT003 Aug-6-20		Passmore	e Hardness, Total (Total as CaCO3) mg/L	10.4	52	104	72.8	35.29412	25
SEAT003 Aug-6-1		CARO	*Cadmium, total	mg/L	1E-04	0.0005	0.0011	0.0004	93.33333	25
SEAT003 Aug-6-1		CARO	*Iron, total	mg/L	0.1	0.5	1.56	0.6	88.88889	25
SEAT003 Aug-6-1		CARO	Lead, total	mg/L	0.001	0.005	0.017	0.005	109.0909	25
SEAT003 Aug-6-1		CARO	Manganese, total	mg/L	0.002	0.01	0.197	0.1	65.31987	25
SEAT003 Aug-6-1	5 Sediment	CARO	*Molybdenum	mg/kg	0.1	0.5	6.1	8.8	36.24161	25


*For Cd, Fe, Mo note the difference between these duplicates is less than 2x the detection limit as one of the values is near or at the detection level. Total Pb is just over this detection criteria

10.10 Appendix 10: Scatterplots of Stress Score calculation methods and Human Disturbance Gradient ratings.

Scatterplot Matrix

Figure 20. Scatterplot of Human Disturbance Gradient ratings (HDG) and calculated Stress Index Score using percentile binning and three weighting schemes (Totalscore.cat = weighting by average stress category, Totalscore.var=equal weighting by variable, and Totalscore.PC = weighting by PC variance). Smoothed (loess in red) and linear fit lines (in green) are indicted.

Figure 21. Scatterplot of Human Disturbance Gradient ratings (HDG) and calculated Stress Index Score using zscoring and three weighting schemes (Totalscore.catz = weighting by average stress category, Totalscore.varz=equal weighting by variable, and Totalscore.PCz = weighting by PC variance). Smoothed (loess in red) and linear fit lines (in green) are indicted.

10.11 Appendix 11: Macroinvertebrate counts

BEAR LAKE (BEAR001), 2015-07-14, CABIN wetland, 73% sample sorted, Kingdom Animalia

Arthropoda Hexapoda Insecta Arthropoda Hexapoda Cittella Annelida Cittella Annelida Cittella Arthropoda Hexapoda Insecta	Pterygota Pterygota	Diptera Odonata	Nematocera Anisoptera	Chironomidae	Tanypodinae	B 1 1 1			
Arthropoda Hexapoda Insecta Arthropoda Chelicerata Arachno Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Annelida Clitella Annelida Clitella Annelida Clitella	Pterygota		Anisontera		ranypounde	Pentaneurini	Ablabesmyia	Ablabesmyia	1
Arthropoda Chelicerata Arachn Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Annelida Clitella Arnhropoda Hexapoda Insecta Annelida Clitella Annelida Clitella Arthropoda Hexapoda Insecta	10	and the second s	Amboptera	Aeshnidae				Aeshnidae	3
Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Annelida Clitella Annelida Clitella Annelida Clitella Arthropoda Hexapoda Insecta		Trichoptera		Hydroptilidae	Hydroptilinae	Hydroptilini	Agraylea	Agraylea	1
Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Arthropoda Hexapoda Clitella Arthropoda Hexapoda Insecta Annelida Clitella Annelida Clitella Arthropoda Hexapoda Insecta	ida Acari	Trombidiformes	Prostigmata	Arrenuridae			Arrenurus	Arrenurus	1
Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Annelida Clitella Annelida Clitella Annelida Clitella Annelida Clitella	Pterygota	Ephemeroptera	Furcatergalia	Caenidae	Caeninae		Caenis	Caenis Diminuta Gr.	2
Arthropoda Hexapoda Insecta Arthropoda Hexapoda Insecta Annelida Clitella Arthropoda Hexapoda Insecta Annelida Clitella Annelida Clitella Arthropoda Hexapoda Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis	Callibaetis	11
Arthropoda Hexapoda Insecta Annelida Clitella Arthropoda Hexapoda Insecta Annelida Clitella Annelida Clitella Arthropoda Hexapoda Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae			Ceratopogoninae	134
Annelida Clitella Arthropoda Hexapoda Insecta Annelida Clitella Annelida Clitella Arthropoda Hexapoda Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Cryptochironomus	Cryptochironomus	10
Arthropoda Hexapoda Insecta Annelida Clitella Annelida Clitella Arthropoda Hexapoda Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Dasyheleinae		Dasyhelea	Dasyhelea	1
Annelida Clitella Annelida Clitella Arthropoda Hexapoda Insecta	ta Hirudinea	Rhynchobdellida		Glossiphoniidae	Glossiphoniinae		Glossiphonia	Glossiphonia complanata	1
Annelida Clitella Arthropoda Hexapoda Insecta	Pterygota	Trichoptera		Limnephilidae	Limnephilinae	Chilostigmini	Glyphopsyche	Glyphopsyche irrorata	1
Arthropoda Hexapoda Insecta	ta Hirudinea	Rhynchobdellida		Glossiphoniidae	Haementeriinae		Helobdella	Helobdella	6
· · · · ·	ta Hirudinea	Rhynchobdellida		Glossiphoniidae	Haementeriinae		Helobdella	Helobdella stagnalis	17
Arthropoda Crustacoa Malaco	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Heterotrissocladius	Heterotrissocladius	1
Artinopoua crustacea ivialaco	straca Eumalacostraca	a Amphipoda	Gammaridea	Hyalellidae			Hyalella	Hyalella	15
Arthropoda Chelicerata Arachn	ida Acari	Trombidiformes	Prostigmata	Hydrodromidae			Hydrodroma	Hydrodroma	4
Arthropoda Hexapoda Insecta	Pterygota	Trichoptera		Hydroptilidae	Hydroptilinae	Hydroptilini	Hydroptila	Hydroptila	1
Mollusca Bivalvi	a Heterodonta	Veneroida		Sphaeriidae			Pisidium	Pisidium	66
Arthropoda Hexapoda Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Polypedilum	Polypedilum	13
Arthropoda Hexapoda Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius	Psectrocladius	1
Arthropoda Hexapoda Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Macropelopiini	Radotanypus	Radotanypus	1
Arthropoda Chelicerata Arachn	ida Acari	Trombidiformes	Prostigmata	Sperchontidae			Sperchon	Sperchon	1
Arthropoda Hexapoda Insecta	Pterygota	Diptera	Brachycera	Tabanidae				Tabanidae	3
Arthropoda Hexapoda Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini		Thienemannimyia Gr.	5
Arthropoda Hexapoda Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Zavrelimyia	Zavrelimyia	2

BONANZA CR. (BON001), 2015-07-21, CABIN wetland, 11% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	Taxon	Sub_Count
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia	Ablabesmyia	6
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Aeshnidae				Aeshnidae	5
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Furcatergalia	Caenidae	Caeninae		Caenis	Caenis Diminuta Gr.	5
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis	Callibaetis	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae				Ceratopogonidae	5
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae			Ceratopogoninae	23
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini		Chironomini	1
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae				Coenagrionidae	58
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Dasyheleinae		Dasyhelea	Dasyhelea	118
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Gerridae				Gerridae	2
Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Gammaridea	Hyalellidae			Hyalella	Hyalella	7
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Libellulidae				Libellulidae	5
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Mesoveliidae			Mesovelia	Mesovelia	2
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Veliidae	Microveliinae		Microvelia	Microvelia	13
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Monopelopia	Monopelopia	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Monopelopia	Monopelopia	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Paratanytarsus	Paratanytarsus	19
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Paratanytarsus	Paratanytarsus	2
Mollusca		Gastropoda		Basommatophora		Planorbidae			Planorbella	Planorbella	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Polypedilum	Polypedilum	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius	Procladius	9
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius	Psectrocladius	8
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Pseudochironomini	Pseudochironomus	Pseudochironomus	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini		Tanytarsini	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Tanytarsus	Tanytarsus	23
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Tanytarsus	Tanytarsus	1

BEAVER LAKES COMPLEX (BVL002), 2015-07-29, CABIN wetland, 59% sample sorted, Kingdom Animalia

SWAMP: Wetland Invertebrate Assessment Tool

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	Taxon	Sub_Count
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia	Ablabesmyia	34
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia	Ablabesmyia	5
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Aeshnidae				Aeshnidae	3
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Anisoptera				Anisoptera	31
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae	Anophelinae		Anopheles	Anopheles	4
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis	Callibaetis	30
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae			Ceratopogoninae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae				Coenagrionidae	18
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Corduliidae				Corduliidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Corixidae				Corixidae	12
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Corynoneura	Corynoneura	15
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Corynoneura	Corynoneura	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Cricotopus	Cricotopus (Isocladius)	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae				Culicidae	5
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae				Culicidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Dixidae			Dixella	Dixella	11
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae				Dytiscidae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Endochironomus	Endochironomus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Gerridae				Gerridae	2
Annelida		Clitellata	Hirudinea	Rhynchobdellida		Glossiphoniidae				Glossiphoniidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Lestidae			Lestes	Lestes	7
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Belostomatidae	Lethocerinae		Lethocerus	Lethocerus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Libellulidae				Libellulidae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Limnophyes	Limnophyes	6
Mollusca		Bivalvia	Heterodonta	Veneroida		Pisidiidae			Musculium	Musculium	7
Arthropoda	Chelicerata	Arachnida	Acari	Sarcoptiformes	Oribatida	Oribatida				Oribatida	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Parachironomus	Parachironomus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Paratanytarsus	Paratanytarsus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius	Procladius	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius	Psectrocladius	88
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius	Psectrocladius	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini		Thienemannimyia Gr.	2

BEAVER LAKES COMPLEX (BVL003), 2015-07-29, CABIN wetland, 76% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	Taxon	Sub_Count
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia	Ablabesmyia	34
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Aeshnidae				Aeshnidae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Anisoptera				Anisoptera	14
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Arrenuridae			Arrenurus	Arrenurus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis	Callibaetis	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae			Ceratopogoninae	106
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Cladopelma	Cladopelma	6
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae				Coenagrionidae	10
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae	Colymbetinae	Colymbetini	Colymbetes	Colymbetes	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Cryptochironomus	Cryptochironomus	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae				Culicidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae				Culicidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Dasyheleinae		Dasyhelea	Dasyhelea	8
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae				Dytiscidae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae				Dytiscidae	1
Annelida		Clitellata	Oligochaeta	Enchytraeida		Enchytraeidae			Enchytraeus	Enchytraeus	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Endochironomus	Endochironomus	2
Annelida		Clitellata	Hirudinea	Arhynchobdellida	Erpobdelliformes	Erpobdellidae	Erpobdellinae		Erpobdella	Erpobdella	12
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Gerridae	Gerrinae		Gerris	Gerris	1
Annelida		Clitellata	Hirudinea	Rhynchobdellida		Glossiphoniidae	Glossiphoniinae		Glossiphonia	Glossiphonia complanata	1
Annelida		Clitellata	Hirudinea	Rhynchobdellida		Glossiphoniidae	Haementeriinae		Helobdella	Helobdella stagnalis	8
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Larsia	Larsia	3
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Lestidae				Lestidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Libellulidae				Libellulidae	17
Mollusca		Bivalvia	Heterodonta	Veneroida		Pisidiidae			Musculium	Musculium	9
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae		Nais	Nais	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Paratanytarsus	Paratanytarsus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Phryganeidae				Phryganeidae	1
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae			Pisidium	Pisidium	7
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Polypedilum	Polypedilum	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius	Procladius	6
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius	Psectrocladius	30
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae				Sphaeriidae	16
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae			Tanypodinae	2

COOLEY LAKE (CL001), 2015-07-9, CABIN wetland, 28% sample sorted, Kingdom Animalia

SWAMP: Wetland Invertebrate Assessment Tool

ArthropodaHexapodaInsectaPterygotaDipteraNematoceraChironomidaeTanypodinaePentaneuriniAblabesmyiaAblabesmyiaArthropodaHexapodaInsectaPterygotaOdonataAnisopteraAnisopteraAeshnidae-AnisopteraArthropodaHexapodaInsectaPterygotaOdonataAnisopteraPhryganeidaePhryganeinaeBanksiola crotchiArthropodaHexapodaInsectaPterygotaDipteraNematoceraCeratopogonidaeCeratopogoniae-CeratopogoniaeArthropodaHexapodaInsectaPterygotaOdonataZygopteraCoenagrionidaeChironominaeChironominaeChironominaeDipteraArthropodaHexapodaInsectaPterygotaDipteraNematoceraDinteraChironomidaeChironomidaeChironominaeDipteraDipteraArthropodaHexapodaInsectaPterygotaDipteraNematoceraChironomidaeTanypodinaePentaneuriniGuttipelopiaGuttipelopiaArthropodaHexapodaInsectaPterygotaDipteraNematoceraChironomidaeTanypodinaePentaneuriniHelobdellaHelobdellaArthropodaHexapodaInsectaPterygotaColeopteraNematoceraChironomidaeTanypodinaeHydraenaHydraenaArthropodaHexapodaInsectaPterygotaColeopteraNematoceraChironomidaeHydraeninaHydraenaHydraenaArt	Sub_Count
ArthropodaHexapodaInsectaPterygotaOdonataAnisopteraPhryganeidaePhryganeinaePhryganeinaeBanksiolaPanksiol	4
ArthropodaHexapodaInsectaPterygotaTrichopteraPhryganelidaePhryganelidaePhryganelinaeBanksiolaBanksiola crotchiArthropodaHexapodaInsectaPterygotaDipteraNematoceraCeratopogonidaeCeratopogonidaeCeratopogoninaeChironominaDinteraNematoceraChironomidaeChironominaDinteraNematoceraChironomidaeChironominaChironominaDinteraNematoeraChironomidaeChironominaeChironomidaeChironominaeChironomida	4
ArthropodaHexapodaInsectaPterygotaDipteraNematoceraCeratopogonidaeCeratopogonidaeCeratopogonidaeArthropodaHexapodaInsectaPterygotaOdonataZygopteraCoenagrionidaeChironomidaeChironominaeChironominaeChironominaDipteraNematoceraCoenagrionidaeArthropodaHexapodaInsectaPterygotaDipteraNematoceraDikaleChironominaeChironominaeChironominaeChironominaeDixellaDixellaDixellaArthropodaHexapodaInsectaPterygotaDipteraNematoceraGerridaeChironomidaeChironominaeChironominaeChironominaeChironominaeDixellaDixellaDixellaArthropodaHexapodaInsectaPterygotaDipteraNematoceraChironomidaeTanypodinaePentaneuriniGuttipelopiaGuttipelopiaAnnelidaCitellataHirudineaRhynchodellidaGamarideaHydrenidaeHydraeniaHydraeniaHydraenaArthropodaHexapodaInsectaPterygotaColeopteraPolyphagaHydrenideeHydraeniniaHydraeniaHydraenaArthropodaHexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominaeHydraeniaArthropodaHexapodaInsectaPterygotaColeopteraPolyphagaHydrenideeHydraeniaHydraeniaHydraenaArthropodaHexapodaInsectaPter	2
ArthropodaHersgotaOdonataZygopteraCoenagrionidaeCoenagrionidaeArthropodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominaeDipteraDipteraArthropodaHexapodaInsectaPterygotaDipteraNematoceraDixidaeDixidaeDipteraDipteraNematoceraDixidaeDipteraDipteraNematoceraDixidaeDipteraNematoceraDixidaeDipteraNematoceraChironominaeChironominaeDipteraNematoceraChironomidaeTanypodinaePentaneuriniGuttipelopiaGuttipelopiaArthropodaInsectaPterygotaDipteraNematoceraChironomidaeTanypodinaePentaneuriniGuttipelopiaGuttipelopiaArthropodaCitellataHirudineaRhynchobdellidaGammarideaHyalellidaeHydraeniniaHydraeniniaHydraenaHydraenaArthropodaInsectaPterygotaColeopteraAdephagaDytiscidaeHydroprinaeBidessiniLiodessusLiodessusLiodessusAnnelidaCiltellataOligotaetaLumbriculidaLumbriculidaeChironominaeChironominaeChironominaeChironominaeChironominaeChironominaeChironominaeLumbriculusLumbriculusAnthropodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominaMirotendipesMirotendipesMirotendipesAnthropodaInsectaPter	2
ArthropodaHexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominaeChironominaeChironominaeDipteraDizellaDizellaDizellaArthropodaHexapodaInsectaPterygotaDipteraNematoceraDixidaeDixidaeDixellaDixellaDixellaDixellaArthropodaHexapodaInsectaPterygotaDipteraNematoceraChironomidaeTanypodinaePentaneuriniGuttipelopiaGuttipelopiaGuttipelopiaGuttipelopiaGuttipelopiaHelobdella stagnalisAnnelidaClitellataHirudineaRhynchobdellidaGammarideaHydraenidaeHydraeninaeHydraeniaHydraenaHydraenaArthropodaHexapodaInsectaPterygotaColeopteraPolyphagaHydraenidaeHydraeniaeHydraeniaHydraenaHydraenaArthropodaHexapodaInsectaPterygotaColeopteraAdephagaDytiscidaeHydraeninaeHydraenaLumbriculusLumbriculusArthropodaHexapodaInsectaPterygotaDipteraNematoceraChironominaeChironominaeChironominaChironominaeNicotendipesMicrotendipesMicrotendipesArthropodaHexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominaeChironominaChironominaChironominaChironominaChironominaChironominaChironominaChironominaChironominaC	22
Arthropoda HexapodaInsectaPterygotaDipteraNematoceraDixidaeDixellaDixellaArthropoda HexapodaInsectaPterygotaHemipteraHeteropteraGerridaeFanypodinaePentaneuriniGuttipelopiaGuttipelopiaArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeTanypodinaePentaneuriniGuttipelopiaGuttipelopiaAnnelidaCitellataHirudineaRhynchobdellidaGlossiphonidaeHaementerinaeHelobdellaHelobdellaHelobdellaArthropoda CrustaceaMalacostracaAmphipodaGamarideaHydraenidaeHydraeninaHydraeniaHydraenaArthropoda HexapodaInsectaPterygotaColeopteraPolyphagaHydraenidaeHydraeninaeHydraeniaHydraenaArthropoda HexapodaInsectaPterygotaColeopteraAdephagaDytiscidaeHydraeninaeHydraeniaHydraenaArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominaUnobriculusLumbriculusArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominaNilothaumaNilothaumaArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominaPisciolidaeArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominae <td>1</td>	1
Arthropoda HexapodaInsectaPterygotaHemipteraHeteropteraGerridaeGerridaeGerridaeArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeTanypodinaePentaneuriniGuttipelopiaGuttipelopiaAnnelidaCitellataHirudineaRhynchoddellidaGlossiphoniidaeHaementeriinaeHelobdellaHelobdellaArthropoda CrustaceaMalacostracaAmphipodaGamarideaHydlellidaeHydraeniaHydraeniaArthropoda HexapodaInsectaPterygotaColeopteraPolyphagaHydraenideeHydraeninaeHydraeniniHydraenaArthropoda HexapodaInsectaPterygotaColeopteraAdephagaDytiscidaeHydroporinaeBidessiniLiodessusLiodessusAnthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominaMicrotendipesAnthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominiaMicrotendipesArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominiaNilothaumaNilothaumaArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominiaPiscicolidaeAnthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominiaPiscicolidae <td>5</td>	5
Arthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeTanypodinaePentaneuriniGuttipelopiaGuttipelopiaAnnelidaClitellataHirudineaRhynchobdellidaGassiphoniidaeHaementeriinaeHaementeriinaeHelobdellaHelobdella stagnalisArthropoda CrustaceaMalacostracaEumalacostracaAmphipodaGammarideaHyalellidaeHyaleniidaeHyaleniiniaHydraeniaArthropoda HexapodaInsectaPterygotaColeopteraAldephagaHydraeniadaeHydraeniaeHydraeniaHydraeniaAnthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironomiaeChironominaChironominaChironominaChironominaeChironominaeChironominaeChironominaeChironominaeChironominaeChironominaeChironominaeChironominaeChironominaNicrotendipesPestoellaPagastiellaArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominaeChironominaNicrotendipesPagastiellaArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominaePiscicolidaeMolluscaBivalviaHeterodontaVeneroidaNematoceraChironominaeChironominaPisdiumPiscicolidaeMolluscaBivalviaHeterodontaVeneroidaNematoceraChironomidaeChironominaePisdiumPisdium <td>5</td>	5
AnnelidaClitellataHirudineaRhynchobdellidaGlossiphoniidaeHarmenteriinaeHelobdellaHelobdellaHelobdellaHelobdellaHelobdellaHelobdellaHelobdellaHagallaArthropodaCrustaceaMalacostracaEumalacostracaAmphipodaGammarideaHyalellidaeHydraeninaeHydraeninaHydraeniaHydraenaHydra	1
Arthropoda CrustaceMalacostraca Eumalacostraca AmphipodaGammarideaHyalellidaeHyalellidaeHyalellaHyalellaArthropoda HexapodaInsectaPterygotaColeopteraPolyphagaHydraenidaeHydraenidaeHydraeniaHydraeniaHydraenaHydraenaArthropoda HexapodaInsectaPterygotaColeopteraAdephagaDytiscidaeHydraeniaHydraeniaHydraenaLiodessusLiodessu	1
Arthropoda HexapodaInsectaPterygotaColeopteraPolyphagaHydraenidaeHydraenidaeHydraenia<	2
Arthropoda Herygota Coleoptera Adephaga Dytiscidae Hydroporinae Bidessini Liodessus Liodessus Annelida Clitellata Oligochaeta Lumbriculida Lumbriculida Lumbriculius Lumbriculus Lumbriculus Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Chironominae Chironominae Chironomina Chironominae Chironomina Nematocera Chironomidae Chironominae Chironomina Nematocera Chironomidae Chironominae Chironomina Nematocera Chironomiae Chironominae Chironomina Nematocera Chironomiae Chironominae Chironominae Chironomina Nematocera Chironominae Chironomina Piscicolidae Piscicolidae Piscicolidae Piscicolidae Piscidium Piscidium Piscidium Piscidium Pisdium Pisdiui Pisdiui Pisdiui	3
Annelida Clitellata Oligochaeta Lumbriculida Lumbriculidae Lumbriculidae Lumbriculus Lumbriculus Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Chironominae Chironomini Microtendipes Microtendipes Pderugota Nolothauma Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Chironomina Chironomini Nilothauma Nilothauma Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironominae Chironomini Pdagastiella Pagastiella Annelida Clitellata Hirudinea Rhynchobdellida Piscicolidae Piscicolidae Piscicolidae Mollusca Bivalvia Heterodonta Veneroida Sphaeriidae Chironominae Chironomini Polypedilum Polypedilum Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Chironominae Chironomini Pdagastiella Pisidium Arthropoda Hexapoda Insecta Pterygo	1
Arthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominiMicrotendipesMicrotendipesPdellus Gr.Arthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominiNilothaumaNilothaumaArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominiNilothaumaNilothaumaAnnelidaCitellataHirudineaRhynchobdellidaPsicciolidaePiscicolidaePisciolidaeMolluscaBivalviaHeterodontaVeneroidaSphaeriidaeChironominaeChironominiPolypedilumArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaePisciolidaeMolluscaBivalviaHeterodontaVeneroidaSphaeriidaeChironominaeChironominiPolypedilumArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominiPolypedilumArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeProcladiusProcladiusArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeTanypodinaeProcladiusProcladius	1
Arthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominiNilothaumaNilothaumaArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominiPagastiellaPagastiellaAnnelidaClitellataHirudineaRhynchoddellidaPiscicolidaePiscicolidaePiscicolidaeMolluscaBivalviaHeterodontaVeneroidaSphaeriidaeChironominaeChironominiPolypedilumArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeChironominaeChironominiPolypedilumArthropoda HexapodaInsectaPterygotaDipteraNematoceraChironomidaeTanypodinaeProcladiusProcladiusProcladius	3
Arthropoda Herxgota Diptera Nematocera Chironomidae Chironomina Chironomini Pagastiella Pagastiella Annelida Clitellata Hirudinea Rhynchobdellida Piscicolidae Piscicolidae Piscicolidae Mollusca Bivalvia Heterodonta Veneroida Sphaeriidae Chironominae Chironomina Pisdidium Pisidium Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Chironomina Chironomin Polypedilum Polypedilum Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Tanypodinae Procladius Procladius Procladius	155
Annelida Clitellata Hirudinea Rhynchobdellida Piscicolidae Piscicolidae Mollusca Bivalvia Heterodonta Veneroida Sphaeriidae Pisidium Pisidium Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Chironominae Chironomini Polypedilum Polypedilum Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Tanypodinae Procladiini Procladius Procladius	11
Mollusca Bivalvia Heterodonta Veneroida Sphaeriidae Pisidium Pisidium Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Chironominae Chironomini Polypedilum Polypedilum Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Tanypodinae Procladiini Procladius Procladius	1
Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Chironominae Chironomini Polypedilum Polypedilum Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Tanypodinae Procladiini Procladius Procladius	1
Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Tanypodinae Procladiini Procladius Procladius	2
	12
Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Orthocladiinae Psectrocladius Psectrocladius	56
	34
Mollusca Bivalvia Heterodonta Veneroida Sphaeriidae Sphaeriidae	2
Arthropoda Hexapoda Insecta Pterygota Diptera Brachycera Tabanidae Tabanidae Tabanidae	2
Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Chironominae Tanytarsini Tanytarsus Tanytarsus	4
Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Tanypodinae Pentaneurini Thienemannimyia Gr.	5
Arthropoda Hexapoda Insecta Pterygota Diptera Nematocera Chironomidae Tanypodinae Pentaneurini Zavrelimyia Zavrelimyia	1

ELDER'S POND (ELD001), 2015-07-13, CABIN wetland, 13% sample sorted, Kingdom Animalia

Phylum SubPhylur	n Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	SubGenus	Taxon	Sub_Count
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia		Ablabesmyia	3
Arthropoda Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Anisoptera					Anisoptera	2
Annelida	Clitellata	Oligochaeta	Tubificida		Naididae	Tubificinae		Aulodrilus		Aulodrilus	6
Arthropoda Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis		Callibaetis	10
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae					Ceratopogonidae	2
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae				Ceratopogoninae	2
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chaoboridae	Chaoborinae		Chaoborus		Chaoborus	1
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Cladopelma		Cladopelma	3
Arthropoda Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae					Coenagrionidae	24
Arthropoda Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Corixidae					Corixidae	3
Arthropoda Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Gammaridea	Crangonyctidae			Crangonyx		Crangonyx	13
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Cricotopus	Cricotopus	Cricotopus (Cricotopus)	1
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae					Culicidae	4
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae					Culicidae	3
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Dasyheleinae		Dasyhelea		Dasyhelea	4
Arthropoda Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae					Dytiscidae	14
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Ephydridae					Ephydridae	2
Arthropoda Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Gerridae					Gerridae	6
Arthropoda Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae	Dytiscinae	Aciliini	Graphoderus		Graphoderus	1
Mollusca	Gastropoda		Basommatophora		Planorbidae			Gyraulus		Gyraulus	5
Arthropoda Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Haliplidae			Haliplus		Haliplus	1
Arthropoda Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Gammaridea	Hyalellidae			Hyalella		Hyalella	122
Arthropoda Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae	Hydroporinae	Hygrotini	Hygrotus		Hygrotus	4
Arthropoda Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Lestidae			Lestes		Lestes	4
Arthropoda Hexapoda		Pterygota	Coleoptera	Adephaga	Dytiscidae	Hydroporinae	Bidessini	Liodessus		Liodessus	6
Mollusca	Gastropoda	10	Basommatophora		Lymnaeidae	<i>·</i> ·				Lymnaeidae	2
Arthropoda Hexapoda		Pterygota	Diptera	Nematocera		Chironominae	Tanytarsini	Micropsectra		Micropsectra	1
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	, Chironomini	Microtendipes		Microtendipes Pedellus Gr.	1
Arthropoda Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Veliidae	Microveliinae		Microvelia		Microvelia	1
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Stratiomvidae	Stratiomyinae	Stratiomvini			Odontomyia / Hedriodiscus	1
Mollusca	Gastropoda		Basommatophora		Physidae			Physella		Physella	17
Mollusca	Gastropoda		Basommatophora		Planorbidae			,		Planorbidae	7
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Polypedilum		Polypedilum	21
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius		Procladius	11
Arthropoda Hexapoda		Pterygota	Diptera	Nematocera		Orthocladiinae		Psectrocladius		Psectrocladius	1
Arthropoda Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Nepidae	Ranatrinae		Ranatra		Ranatra	1
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Sciomyzidae					Sciomyzidae	1
Mollusca	Bivalvia	Heterodonta	Veneroida		Sphaeriidae					Sphaeriidae	4
Mollusca	Gastropoda		Basommatophora		Lymnaeidae			Stagnicola		Stagnicola	2
Arthropoda Hexapoda		Pterygota	Diptera	Nematocera		Tanypodinae		0		Tanypodinae	1
Arthropoda Hexapoda	Insecta	Pterygota	Coleoptera	Polyphaga	Hydrophilidae	Hydrophilinae	Hydrophilini	Tropisternus		Tropisternus	1
Arthropoda Hexapoda	Insecta	Pterygota	Coleoptera	Polyphaga	Hydrophilidae	Hydrophilinae		Tropisternus		Tropisternus	1
Annelida	Clitellata	Oligochaeta	Tubificida		Naididae	Tubificinae				Tubificinae	1
Mollusca	Gastropoda	0	Heterostropha		Valvatidae			Valvata		Valvata	10
Wonusca	Gastropoua		Heterostropha		valvalidae			Valvala		Valvala	10

FOMI'S WETLAND (FO001), 2015-06-29, CABIN wetland, 17% sample sorted, Kingdom Animalia

Phylum SubPhylum		SubClass	Order	SubOrder	Family	,		Genus	SubGenus		Sub_Count
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia		Ablabesmyia	12
rthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Acricotopus		Acricotopus	18
rthropoda Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Aeshnidae					Aeshnidae	2
Arthropoda Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Aeshnidae			Anax		Anax	1
rthropoda Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Anisoptera					Anisoptera	6
rthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae	Anophelinae		Anopheles		Anopheles	8
Arthropoda Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Arrenuridae			Arrenurus		Arrenurus	1
Arthropoda Hexapoda	Insecta	Pterygota	Coleoptera	Polyphaga	Hydrophilidae	Hydrophilinae	Berosini	Berosus		Berosus	8
Arthropoda Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis		Callibaetis	85
Arthropoda Hexapoda	Insecta	Pterygota	Diptera		Ceratopogonidae					Ceratopogonidae	1
Arthropoda Hexapoda	Insecta	Pterygota	Diptera		Ceratopogonidae	Ceratopogoninae				Ceratopogoninae	4
rthropoda Hexapoda	Insecta	Pterygota	Diptera		Chaoboridae	Chaoborinae		Chaoborus		Chaoborus	1
Arthropoda Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae	chaobonnae		chaoboras		Coenagrionidae	2
Arthropoda Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Corixidae					Corixidae	2
Arthropoda Hexapoda	Insecta	Pterygota	Diptera		Chironomidae	Orthocladiinae		Corynoneura		Corynoneura	6
Arthropoda Crustacea			Amphipoda		Crangonyctidae	Orthociaumae		Crangonyx		Crangonyx	8
						O the stadtes a			C -1		-
Arthropoda Hexapoda	Insecta	Pterygota	Diptera		Chironomidae	Orthocladiinae		Cricotopus	cricotopus	Cricotopus (Cricotopus)	6
rthropoda Hexapoda	Insecta	Pterygota	Diptera		Culicidae					Culicidae	2
and the second	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae			Dasyhelea		Dasyhelea	
nnelida	Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae		Dero		Dero	6
	Insecta	Pterygota	Diptera		Chironomidae	Chironominae	Chironomini	Dicrotendipes		Dicrotendipes	2
Arthropoda Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae					Dytiscidae	15
Arthropoda Hexapoda	Insecta	Pterygota	Diptera		Chironomidae	Chironominae	Chironomini	Endochironomus		Endochironomus	5
rthropoda Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Gerridae					Gerridae	1
Arthropoda Hexapoda	Insecta	Pterygota	Trichoptera		Limnephilidae	Limnephilinae	Chilostigmini	Glyphopsyche		Glyphopsyche irrorata	1
rthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Guttipelopia		Guttipelopia	1
Iollusca	Gastropoda		Basommatophora		Planorbidae			Gyraulus		Gyraulus	24
rthropoda Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Haliplidae			Haliplus		Haliplus	3
nnelida	Clitellata	Hirudinea			Hirudinea					Hirudinea	3
Arthropoda Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Hydrachnidae			Hydrachna		Hydrachna	1
Arthropoda Hexapoda	Insecta	Pterygota	Coleoptera	Polyphaga	Hydrophilidae					Hydrophilidae	1
rthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Labrundinia		Labrundinia	1
	Insecta	Pterygota	Odonata	Zygoptera	Lestidae			Lestes		Lestes	6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Arachnida	Acari	Trombidiformes		Limnesiidae			Limnesia		Limnesia	5
Arthropoda Hexapoda	Insecta	Pterygota	Hemiptera		Veliidae	Microveliinae		Microvelia		Microvelia	6
	Insecta	Pterygota	Diptera		Chironomidae	Tanypodinae	Pentaneurini	Monopelopia		Monopelopia	2
Innelida	Clitellata	Oligochaeta	Tubificida	Nematocera	Naididae	Naidinae	rentancarini	Monoperopia		Naidinae	2
innelida	Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae		Nais		Nais	2
				listoroptoro		Naturnae		INGIS			1
	Insecta	Pterygota	Hemiptera	Heteroptera						Nepidae	9
rthropoda Hexapoda	Insecta	Pterygota	Hemiptera		Notonectidae	Notonectinae	Notonectini	Notonecta		Notonecta	
rthropoda Chelicerata		Acari	Sarcoptiformes	Oribatida	Oribatida					Oribatida	2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Insecta	Pterygota	Diptera		Chironomidae		Chironomini	Parachironomus		Parachironomus	1
	Insecta	Pterygota	Coleoptera	Polyphaga	Hydrophilidae		Anacaenini	Paracymus		Paracymus	1
rthropoda Hexapoda	Insecta	Pterygota	Diptera		Chironomidae	Chironominae	Tanytarsini	Paratanytarsus		Paratanytarsus	13
Arthropoda Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Haliplidae			Peltodytes		Peltodytes	2
Arthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Polypedilum		Polypedilum	2
Innelida	Clitellata	Oligochaeta	Tubificida		Naididae	Pristininae		Pristina		Pristina	4
rthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius		Procladius	2
Iollusca	Gastropoda		Basommatophora		Planorbidae			Promenetus		Promenetus	2
rthropoda Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius		Psectrocladius	4
rthropoda Hexapoda	Insecta	Pterygota	Diptera		Chironomidae	Chironominae	Pseudochironomini			Pseudochironomus	5
Arthropoda Hexapoda	Insecta	Pterygota	Diptera		Stratiomyidae					Stratiomyidae	2
					Chironomidae	Tanypodinae					1
rthropoda Hexapoda	Insecta										
Arthropoda Hexapoda Arthropoda Hexapoda	Insecta Insecta	Pterygota Pterygota	Diptera Diptera		Tipulidae	ranypounae				Tanypodinae Tipulidae	3

FRANK Z.'S OXBOW (FRA001), 2015-07-10, CABIN wetland, 12% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	SubGenus	Taxon	Sub_Count
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia		Ablabesmyia	6
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Anisoptera					Anisoptera	21
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae	Anophelinae		Anopheles		Anopheles	4
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Arrenuridae			Arrenurus		Arrenurus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis		Callibaetis	38
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae					Ceratopogonidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae				Ceratopogoninae	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chaoboridae	Chaoborinae		Chaoborus		Chaoborus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Chironomus		Chironomus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Cloeon		Cloeon dipterum	1
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae					Coenagrionidae	78
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Corixidae					Corixidae	6
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Cricotopus	Cricotopus	Cricotopus (Cricotopus)	1
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae					Dytiscidae	9
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Polyphaga	Hydrophilidae	Hydrophilinae	Hydrophilini	Enochrus		Enochrus	2
Mollusca		Gastropoda		Basommatophora		Planorbidae			Gyraulus		Gyraulus	4
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Haliplidae			Haliplus		Haliplus	1
Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Gammaridea	Hyalellidae			Hyalella		Hyalella	13
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Polyphaga	Hydrochidae			Hydrochus		Hydrochus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Lestidae			Lestes		Lestes	2
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Libellulidae					Libellulidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Limnephilidae	Limnephilinae	Limnephilini	Limnephilus		Limnephilus	1
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Limnesiidae			Limnesia		Limnesia	8
Mollusca		Gastropoda		Basommatophora		Lymnaeidae					Lymnaeidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Micropsectra		Micropsectra	4
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae					Naididae	2
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Unionicolidae			Neumania		Neumania	1
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Notonectidae	Notonectinae	Notonectini	Notonecta		Notonecta	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Parachironomus		Parachironomus	2
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Polyphaga	Hydrophilidae	Hydrophilinae	Anacaenini	Paracymus		Paracymus	1
Mollusca		Gastropoda		Basommatophora		Physidae			Physella		Physella	13
Mollusca		Gastropoda		Basommatophora		Planorbidae					Planorbidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Polypedilum		Polypedilum	72
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Polypedilum		Polypedilum	2
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Pristininae		Pristina		Pristina	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius		Psectrocladius	9
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Pseudochironomini	Pseudochironomus		Pseudochironomus	3
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae		Slavina		Slavina appendiculata	1
Mollusca		Gastropoda		Basommatophora		Lymnaeidae			Stagnicola		Stagnicola	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Thienemanniella		Thienemanniella	1
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Polyphaga	Hydrophilidae	Hydrophilinae	Hydrophilini	Tropisternus		Tropisternus	4
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Tubificinae				Tubificinae	1

GANDER CR. UPPER FEN (GC001), 2015-07-09, CABIN wetland, 76% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	Taxon	Sub_Count
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia	Ablabesmyia	2
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Aeshnidae				Aeshnidae	3
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Anisoptera				Anisoptera	1
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Phryganeidae	Phryganeinae		Banksiola	Banksiola crotchi	3
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis	Callibaetis	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae			Ceratopogoninae	79
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Corixidae				Corixidae	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Dasyheleinae		Dasyhelea	Dasyhelea	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Dicrotendipes	Dicrotendipes	3
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Gerridae				Gerridae	2
Annelida		Clitellata	Hirudinea	Rhynchobdellida		Glossiphoniidae	Haementeriinae		Helobdella	Helobdella stagnalis	9
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Hydrachnidae			Hydrachna	Hydrachna	2
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Limnephilidae				Limnephilidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae	Hydroporinae	Bidessini	Liodessus	Liodessus	28
Annelida		Clitellata	Oligochaeta	Lumbriculida		Lumbriculidae			Lumbriculus	Lumbriculus	11
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Microtendipes	Microtendipes Pedellus Gr.	1
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Notonectidae	Notonectinae	Notonectini	Notonecta	Notonecta	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Pagastiella	Pagastiella	69
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae			Pisidium	Pisidium	60
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Polypedilum	Polypedilum	12
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius	Procladius	14
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius	Psectrocladius	1
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae				Sphaeriidae	11
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Tanytarsus	Tanytarsus	6

GANDER CR. FLICKER POND (GC002), 2015-07-09, CABIN wetland, 13% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	Taxon	Sub_Count
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia	Ablabesmyia	7
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Anisoptera				Anisoptera	8
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Gerridae	Gerrinae		Aquarius	Aquarius	1
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Arrenuridae			Arrenurus	Arrenurus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis	Callibaetis	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae			Ceratopogoninae	5
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Corixidae				Corixidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Corynoneura	Corynoneura	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Dicrotendipes	Dicrotendipes	19
Annelida		Clitellata	Hirudinea	Arhynchobdellida	Erpobdelliformes	Erpobdellidae	Erpobdellinae		Erpobdella	Erpobdella	2
Annelida		Clitellata	Hirudinea	Rhynchobdellida		Glossiphoniidae	Haementeriinae		Helobdella	Helobdella stagnalis	1
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Lestidae				Lestidae	1
Annelida		Clitellata	Oligochaeta	Lumbriculida		Lumbriculidae				Lumbriculidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Microtendipes	Microtendipes Pedellus Gr.	5
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Nilothauma	Nilothauma	1
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Notonectidae	Notonectinae	Notonectini	Notonecta	Notonecta	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Pagastiella	Pagastiella	9
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae			Pisidium	Pisidium	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Polypedilum	Polypedilum	23
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius	Procladius	156
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius	Psectrocladius	75
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Tabanidae				Tabanidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Tanytarsus	Tanytarsus	10

HAY'S WETLAND (HAY001), 2015-07-10, CABIN wetland, 31% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	Taxon	Sub_Count
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia	Ablabesmyia	11
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Aeshnidae				Aeshnidae	3
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Arrenuridae			Arrenurus	Arrenurus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis	Callibaetis	53
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae			Ceratopogoninae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chaoboridae	Chaoborinae		Chaoborus	Chaoborus	6
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Chironomus	Chironomus	6
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae				Coenagrionidae	4
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Corduliidae				Corduliidae	4
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Corixidae				Corixidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Corynoneura	Corynoneura	9
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae				Culicidae	15
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae				Culicidae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Dixidae			Dixella	Dixella	3
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae				Dytiscidae	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Ephydridae				Ephydridae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Gerridae				Gerridae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Polyphaga	Hydrochidae			Hydrochus	Hydrochus	2
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Hydryphantidae				Hydryphantidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Lestidae			Lestes	Lestes	2
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Limnephilidae	Limnephilinae	Limnephilini	Limnephilus	Limnephilus	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Limnophyes	Limnophyes	1
Annelida		Clitellata	Oligochaeta	Lumbriculida		Lumbriculidae			Lumbriculus	Lumbriculus	2
Mollusca		Gastropoda		Basommatophora		Lymnaeidae				Lymnaeidae	10
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Notonectidae	Notonectinae	Notonectini	Notonecta	Notonecta	5
Arthropoda	Chelicerata	Arachnida	Acari	Sarcoptiformes	Oribatida	Oribatida				Oribatida	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae			Orthocladiinae	1
1 C C C C C C C C C C C C C C C C C C C	Hexapoda	Insecta	Pterygota	Diptera		Chironomidae	Chironominae	Chironomini	Parachironomus	Parachironomus	2
1 C C C C C C C C C C C C C C C C C C C	Hexapoda	Insecta	Pterygota	Ephemeroptera	Furcatergalia	Leptophlebiidae			Paraleptophlebia	Paraleptophlebia	2
1 C C C C C C C C C C C C C C C C C C C	Hexapoda	Insecta	Pterygota	Diptera		Chironomidae	Chironominae	Chironomini	Phaenopsectra	Phaenopsectra	2
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae			Pisidium	Pisidium	1
Mollusca		Gastropoda		Basommatophora		Planorbidae			Planorbella	Planorbella	3
Mollusca		Gastropoda		Basommatophora		Planorbidae				Planorbidae	5
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Polypedilum	Polypedilum	53
, Arthropoda		Insecta	Pterygota	Diptera		Chironomidae	Chironominae	Chironomini	Polypedilum	Polypedilum	1
	Hexapoda	Insecta	Pterygota	Diptera		Chironomidae	Tanypodinae	Procladiini	Procladius	Procladius	1
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius	Procladius	- 6
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius	Psectrocladius	4
1 C C C C C C C C C C C C C C C C C C C	Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Sciomyzidae	orthousande		- Sectronical as	Sciomyzidae	2
Vollusca		Bivalvia	Heterodonta	Veneroida	,	Sphaeriidae				Sphaeriidae	67
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae			Sphaerium	Sphaerium	2
Mollusca		Gastropoda		Basommatophora		Lymnaeidae			Stagnicola	Stagnicola	2
Arthropoda	Hexapode	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae		a capillooid	Tanypodinae	1
- chopoua	nexapoua	Insecta	Pterygota	Diptera		Chironomidae	Chironominae	Tanytarsini		ranypounde	1

LITTLE SLOCAN LAKES S. (LSL002), 2015-07-15, CABIN wetland, 37% sample sorted, Kingdom Animalia

Arthropoda Arthropoda Arthropoda Annelida Arthropoda Arthropoda Arthropoda Arthropoda Arthropoda Arthropoda	Hexapoda Chelicerata Hexapoda Hexapoda Hexapoda	Insecta Insecta Arachnida Clitellata Insecta Insecta Insecta	Pterygota Pterygota Acari Oligochaeta Pterygota	Diptera Diptera Trombidiformes Tubificida	Nematocera Nematocera	Chironomidae Culicidae	Tanypodinae	Pentaneurini	Ablabesmyia	Ablabesmyia	1
Arthropoda Annelida Arthropoda Arthropoda Arthropoda Arthropoda Arthropoda Arthropoda	Chelicerata Hexapoda Hexapoda Hexapoda	Arachnida Clitellata Insecta Insecta	Acari Oligochaeta	Trombidiformes		Culicidae			Annahalaa		
Annelida Arthropoda Arthropoda Arthropoda Arthropoda Arthropoda Arthropoda	Hexapoda Hexapoda Hexapoda Hexapoda	Clitellata Insecta Insecta	Oligochaeta				Anophelinae		Anopheles	Anopheles	1
Arthropoda Arthropoda Arthropoda Arthropoda Arthropoda Arthropoda	Hexapoda Hexapoda Hexapoda	Insecta Insecta		Tubificida	Prostigmata	Arrenuridae			Arrenurus	Arrenurus	1
Arthropoda Arthropoda Arthropoda Arthropoda Arthropoda Arthropoda	Hexapoda Hexapoda Hexapoda	Insecta	Pterygota			Naididae	Tubificinae		Aulodrilus	Aulodrilus	9
Arthropoda Arthropoda Arthropoda Arthropoda	Hexapoda Hexapoda			Ephemeroptera	Pisciforma	Baetidae			Callibaetis	Callibaetis	31
Arthropoda Arthropoda Arthropoda	Hexapoda	Incosta	Pterygota	Diptera	Nematocera	Ceratopogonidae				Ceratopogonidae	3
Arthropoda Arthropoda		insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae			Ceratopogoninae	10
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini		Chironomini	1
	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae				Coenagrionidae	1
	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Corduliidae				Corduliidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Corixidae				Corixidae	17
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Corynoneura	Corynoneura	10
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Cricotopus	Cricotopus (Isocladius)	8
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Cryptochironomus	Cryptochironomus	5
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Cryptotendipes	Cryptotendipes	15
Annelida		Clitellata	Oligochaeta	Enchytraeida		Enchytraeidae			Enchytraeus	Enchytraeus	1
Annelida		Clitellata	Hirudinea	Rhynchobdellida		Glossiphoniidae	Haementeriinae		Helobdella	Helobdella stagnalis	10
Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Gammaridea	Hyalellidae			Hyalella	Hyalella	6
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Hydroptilidae				Hydroptilidae	1
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Lebertiidae			Lebertia	Lebertia	1
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Libellulidae				Libellulidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Limnephilidae				Limnephilidae	4
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Limnesiidae			Limnesia	Limnesia	3
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae	Hydroporinae	Bidessini	Liodessus	Liodessus	5
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Micropsectra	Micropsectra	14
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae				Naididae	7
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae		Nais	Nais	10
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Unionicolidae			Neumania	Neumania	9
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Orthocladius	Orthocladius annectens	8
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Paratanytarsus	Paratanytarsus	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Paratendipes	Paratendipes	3
Arthropoda		Arachnida	Acari	Trombidiformes	Prostigmata	Pionidae			Piona	Piona	10
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Pionidae				Pionidae	1
Mollusca		Bivalvia	Heterodonta	Veneroida	U	Sphaeriidae			Pisidium	Pisidium	10
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Polypedilum	Polypedilum	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Diamesinae	Diamesini	Potthastia	Potthastia Longimanus Gr.	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius	Procladius	10
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius	Psectrocladius	17
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Corixidae	Corixinae		Sigara	Sigara	3
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Siphlonuridae			Siphlonurus	Siphlonurus	3
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae		Slavina	Slavina appendiculata	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Tabanidae				Tabanidae	1
Arthropoda		Insecta	Pterygota	Diptera		Chironomidae	Chironominae	Tanytarsini	Tanytarsus	Tanytarsus	61
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Tubificinae		,	Tubificinae	7
Arthropoda	Chelicerata		Acari	Trombidiformes	Prostigmata	Unionicolidae			Unionicola	Unionicola	1
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae		Vejdovskyella	Vejdovskyella	1

LITTLE WILSON LAKES (LWL001), 2015-07-29, CABIN wetland, 18% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	SubGenus	Taxon	Sub_Count
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Aeshnidae				-	Aeshnidae	12
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Arrenuridae			Arrenurus		Arrenurus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis		Callibaetis	10
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae					Ceratopogonidae	6
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae				Ceratopogoninae	7
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini			Chironomini	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Cladotanytarsus		Cladotanytarsus	14
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Conchapelopia		Conchapelopia	1
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Corixidae					Corixidae	16
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Corynoneura		Corynoneura	19
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Cryptochironomus		Cryptochironomus	1
Annelida		Clitellata	Hirudinea	Arhynchobdellida	Erpobdelliformes	Erpobdellidae	Erpobdellinae		Erpobdella		Erpobdella	2
Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Gammaridea	Gammaridae			Gammarus		Gammarus	6
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Gerridae					Gerridae	2
Annelida		Clitellata	Hirudinea	Rhynchobdellida		Glossiphoniidae	Glossiphoniinae		Glossiphonia		Glossiphonia complanata	1
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Limnephilidae	Limnephilinae	Chilostigmini	Glyphopsyche		Glyphopsyche irrorata	5
Annelida		Clitellata	Hirudinea	Rhynchobdellida		Glossiphoniidae	Haementeriinae		Helobdella		Helobdella stagnalis	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Heterotrissocladius		Heterotrissocladius	1
Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Gammaridea	Hyalellidae			Hyalella		Hyalella	9
Cnidaria		Hydrozoa				Hydrozoa					Hydrozoa	2
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Limnephilidae	Limnephilinae	Limnephilini	Limnephilus		Limnephilus	6
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Tubificinae		Limnodrilus		Limnodrilus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Limnophyes		Limnophyes	2
Annelida		Clitellata	Oligochaeta	Lumbriculida		Lumbriculidae					Lumbriculidae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Veliidae	Microveliinae		Microvelia		Microvelia	1
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae					Naididae	6
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae		Nais		Nais	6
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Orthocladius	Orthocladius	Orthocladius annectens	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Paracladopelma		Paracladopelma	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Phaenopsectra		Phaenopsectra	1
Mollusca		Gastropoda		Basommatophora		Physidae			Physella		Physella	4
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae			Pisidium		Pisidium	92
Mollusca		Gastropoda		Basommatophora		Planorbidae					Planorbidae	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius		Procladius	7
Arthropoda	Hexapoda	Insecta	Pterygota	Megaloptera		Sialidae			Sialis		Sialis	5
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Siphlonuridae			Siphlonurus		Siphlonurus	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Stempellina		Stempellina	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Tanytarsus		Tanytarsus	12
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Tubificinae				Tubificinae	37

SEATON CR. UPPER (SEAT001), 2015-07-14, CABIN wetland, 36% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	SubGenus	Taxon	Sub_Count
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia		Ablabesmyia	1
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Arrenuridae			Arrenurus		Arrenurus	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Forcipomyiinae		Atrichopogon		Atrichopogon	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Brillia		Brillia	2
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis		Callibaetis	100
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae					Ceratopogonidae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae				Ceratopogoninae	36
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae					Coenagrionidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Corixidae					Corixidae	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Corynoneura		Corynoneura	70
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Corynoneura		Corynoneura	1
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Cricotopus	Cricotopus	Cricotopus (Cricotopus)	7
, Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Culicidae					Culicidae	2
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Dixidae			Dixella		Dixella	22
Arthropoda		Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae			e meno		Dytiscidae	3
Arthropoda		Insecta	Pterygota	Hemiptera	Heteroptera	Gerridae					Gerridae	1
Annelida	nexapoda	Clitellata	Hirudinea	Rhynchobdellida	neteroptera	Glossiphoniidae	Haementeriinae		Helobdella		Helobdella stagnalis	3
Arthropoda	Hevanoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Heterotrissocladius		Heterotrissocladius	1
Arthropoda				Amphipoda	Gammaridea	Hyalellidae	orthocidonnae		Hyalella		Hyalella	1
Arthropoda		Insecta	Pterygota	Trichoptera	Garrinaridea	Hydroptilidae	Hydroptilinae	Hydroptilini	Hydroptila		Hydroptila	1
	Chelicerata		Acari	Trombidiformes	Prostigmata	Hygrobatidae	nyuroptimae	nyaropunn	Hygrobates		Hygrobates	1
Arthropoda		Insecta	Pterygota	Coleoptera	Polyphaga	Hydrophilidae	Hydrophilinae	Laccobiini	Laccobius		Laccobius	4
	Chelicerata		Acari	Trombidiformes		Lebertiidae	пушоріпппае	Laccobiiiii	Lebertia		Lebertia	4
	Chelicerata		Acari	Trombidiformes	Prostigmata	Limnesiidae			Limnesia		Limnesia	5
					Prostigmata Nematocera	Chironomidae	Orthocladiinae					3
Arthropoda Annelida	нехароца	Insecta Clitellata	Pterygota	Diptera Tubificida	Nematocera	Naididae	Orthociadiinae		Limnophyes		Limnophyes Naididae	3
		Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae					1
Annelida			Oligochaeta						Nais		Nais	
Arthropoda		Insecta	Pterygota	Hemiptera	Heteroptera	Notonectidae	Notonectinae	Notonectini	Notonecta		Notonecta	2
	Chelicerata		Acari	Trombidiformes	Prostigmata	Oxidae			Oxus		Oxus	-
	Chelicerata		Acari	Trombidiformes	Prostigmata	Hydryphantidae			Panisus		Panisus	1
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Paracladopelma		Paracladopelma	1
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Parakiefferiella		Parakiefferiella	1
	Chelicerata		Acari	Trombidiformes	Prostigmata	Nudomideopsidae			Paramideopsis		Paramideopsis	1
	Chelicerata		Acari	Trombidiformes	Prostigmata	Pionidae			Piona		Piona	2
	Chelicerata		Acari	Trombidiformes	Prostigmata	Pionidae					Pionidae	1
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae			Pisidium		Pisidium	7
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius		Procladius	2
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius		Psectrocladius	3
Arthropoda		Insecta	Pterygota	Trichoptera		Limnephilidae	Limnephilinae	Chilostigmini	Psychoglypha		Psychoglypha	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Macropelopiini	Radotanypus		Radotanypus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Tanytarsus		Tanytarsus	5
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Tubificinae				Tubificinae	6

SEATON CR. MID (SEAT003), 2015-08-06, CABIN wetland, 9% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	SubGenus	Taxon	Sub_Count
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Hydryphantidae			Albertathyas		Albertathyas montana	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Brillia		Brillia	1
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis		Callibaetis	218
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Corynoneura		Corynoneura	7
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Cricotopus	Cricotopus (Isocladius)	Cricotopus (Isocladius)	9
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Dixidae			Dixella		Dixella	26
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Dixidae					Dixidae	3
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae					Dytiscidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Gerridae					Gerridae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Polyphaga	Hydrophilidae	Hydrophilinae	Laccobiini	Laccobius		Laccobius	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Limnophyes		Limnophyes	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Micropsectra		Micropsectra	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Micropsectra		Micropsectra	1
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae					Naididae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Haliplidae			Peltodytes		Peltodytes	1
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae			Pisidium		Pisidium	20
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius		Procladius	6
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius		Psectrocladius	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Macropelopiini	Radotanypus		Radotanypus	22
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Siphlonuridae			Siphlonurus		Siphlonurus	4
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Tubificinae				Tubificinae	6
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Tvetenia		Tvetenia Bavarica Gr.	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Zavrelimyia		Zavrelimyia	3

SUMMIT LAKE LOWER (SUM001), 2015-07-21, CABIN wetland, 11% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	SubGenus	Taxon	Sub_Coun
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Brillia		Brillia	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Cladopelma		Cladopelma	7
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae					Coenagrionidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Cricotopus	Cricotopus	Cricotopus bicinctus	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Dixidae			Dixella		Dixella	1
Annelida		Clitellata	Oligochaeta	Enchytraeida		Enchytraeidae			Enchytraeus		Enchytraeus	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Ephydridae					Ephydridae	50
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Ephydridae					Ephydridae	18
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Limnephilidae	Limnephilinae	Chilostigmini	Glyphopsyche		Glyphopsyche irrorata	15
Annelida		Clitellata	Hirudinea	Rhynchobdellida		Glossiphoniidae	Haementeriinae		Helobdella		Helobdella stagnalis	8
Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Gammaridea	Hyalellidae			Hyalella		Hyalella	5
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Micropsectra		Micropsectra	111
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Micropsectra		Micropsectra	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Microtendipes		Microtendipes Pedellus Gr.	40
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Nanocladius		Nanocladius	1
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Hydroptilidae	Hydroptilinae	Hydroptilini	Oxyethira		Oxyethira	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Paratanytarsus		Paratanytarsus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Paratendipes		Paratendipes	3
Mollusca		Gastropoda		Basommatophora		Physidae			Physella		Physella	2
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae			Pisidium		Pisidium	31
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Polypedilum		Polypedilum	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius		Procladius	14
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Rheotanytarsus		Rheotanytarsus	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Sciomyzidae					Sciomyzidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini			Thienemannimyia Gr.	14
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Zavrelimyia		Zavrelimyia	5

SUMMIT LAKE EDGE (SUM002), 2015-07-21, CABIN wetland, 16% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	SubGenus	Taxon	Sub_Coun
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia		Ablabesmyia	5
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Aeshnidae					Aeshnidae	10
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae	Anophelinae		Anopheles		Anopheles	7
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Notonectidae	Anisopinae		Buenoa		Buenoa	2
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis		Callibaetis	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae					Ceratopogonidae	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae				Ceratopogoninae	12
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Chironomus		Chironomus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Cladopelma		Cladopelma	5
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae					Coenagrionidae	30
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Corynoneura		Corynoneura	3
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae		Dero		Dero	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Dicrotendipes		Dicrotendipes	1
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae					Dytiscidae	4
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Limnephilidae	Limnephilinae	Chilostigmini	Glyphopsyche		Glyphopsyche irrorata	1
Mollusca		Gastropoda		Basommatophora		Planorbidae		-	Gyraulus		Gyraulus	2
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Haliplidae			Haliplus		Haliplus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Haliplidae			Haliplus		Haliplus	1
Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Gammaridea	Hyalellidae			Hyalella		Hyalella	49
	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	, Hydrodromidae			Hydrodroma		Hydrodroma	2
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae	Hydroporinae	Hygrotini	Hygrotus		Hygrotus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Libellulidae					Libellulidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Micropsectra		Micropsectra	2
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Microtendipes		Microtendipes Pedellus Gr.	5
Mollusca		Bivalvia	Heterodonta	Veneroida		Pisidiidae			Musculium		Musculium	12
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae		Nais		Nais	2
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Notonectidae					Notonectidae	11
		Arachnida	Acari	Sarcoptiformes	Oribatida	Oribatida					Oribatida	2
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Parakiefferiella		Parakiefferiella	2
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Paratanytarsus		Paratanytarsus	1
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Phaenopsectra		Phaenopsectra	1
Arthropoda		Insecta	Pterygota	Trichoptera		Phryganeidae					Phryganeidae	2
Mollusca		Gastropoda	70	Basommatophora		Physidae			Physella		Physella	8
Mollusca		Gastropoda		Basommatophora		Planorbidae			Planorbella		Planorbella	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Polypedilum		Polypedilum	16
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius		Procladius	6
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius		Psectrocladius	18
Arthropoda		Insecta	Pterygota	Hemiptera	Heteroptera	Nepidae	Ranatrinae		Ranatra		Ranatra	1
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae		Slavina		Slavina appendiculata	2
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae		Stylaria		Stylaria	43
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Tabanidae					Tabanidae	2
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae				Tanypodinae	4
Arthropoda		Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Tanytarsus		Tanytarsus	9
		macora		process	remacocera	childrende	Sumonominae	rany corbini	, any consus		ranged add	

TYSON E.'S POND (TY001), 2015-07-10, CABIN wetland, 6% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	SubGenus	Taxon	Sub_Coun
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Acricotopus		Acricotopus	4
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Aeshnidae					Aeshnidae	3
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Anisoptera					Anisoptera	10
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae	Anophelinae		Anopheles		Anopheles	4
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Arrenuridae			Arrenurus		Arrenurus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis		Callibaetis	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae					Ceratopogonidae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae				Ceratopogoninae	11
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae					Coenagrionidae	29
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Corixidae					Corixidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Corynoneura		Corynoneura	1
Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Gammaridea	Crangonyctidae			Crangonyx		Crangonyx	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Cricotopus		Cricotopus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Cricotopus	Cricotopus	Cricotopus (Cricotopus)	37
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae					Culicidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae					Culicidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Dasyheleinae		Dasyhelea		Dasyhelea	10
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae					Dytiscidae	2
Mollusca		Gastropoda		Basommatophora		Planorbidae			Gyraulus		Gyraulus	4
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Haliplidae			Haliplus		Haliplus	3
Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Gammaridea	Hyalellidae			Hyalella		Hyalella	86
Mollusca		Gastropoda		Basommatophora		Lymnaeidae					Lymnaeidae	9
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Veliidae	Microveliinae		Microvelia		Microvelia	3
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae		Nais		Nais	93
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Haliplidae			Peltodytes		Peltodytes	3
Mollusca		Gastropoda		Basommatophora		Physidae			Physella		Physella	5
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae			Pisidium		Pisidium	1
Mollusca		Gastropoda		Basommatophora		Planorbidae					Planorbidae	6
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Polypedilum		Polypedilum	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius		Psectrocladius	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Pseudochironomini	Pseudochironomus		Pseudochironomus	8
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Nepidae	Ranatrinae		Ranatra		Ranatra	1
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae					Sphaeriidae	5
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Tipulidae	Tipulinae		Tipula		Tipula	2
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Polyphaga	Hydrophilidae	Hydrophilinae	Hydrophilini	Tropisternus		Tropisternus	1
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Tubificinae				Tubificinae	1
Mollusca		Gastropoda		Heterostropha		Valvatidae			Valvata		Valvata	5

INTEGRATED ECOLOGICAL RESEARCH

WINLAW WOODLOT LOWER (WIN001), 2015-06-30, CABIN wetland, 100% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	Taxon	Sub_Count
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia	Ablabesmyia	13
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Aeshnidae				Aeshnidae	:
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Arrenuridae			Arrenurus	Arrenurus	13
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis	Callibaetis	(
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae			Ceratopogoninae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Chironomus	Chironomus	
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Corduliidae				Corduliidae	:
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Corynoneura	Corynoneura	:
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae				Dytiscidae	(
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Ephydridae				Ephydridae	:
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Gerridae				Gerridae	:
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Haliplidae			Haliplus	Haliplus	:
Annelida		Clitellata	Hirudinea	Rhynchobdellida		Glossiphoniidae	Haementeriinae		Helobdella	Helobdella stagnalis	:
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Lestidae			Lestes	Lestes	:
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Limnephilidae	Limnephilinae	Limnephilini	Limnephilus	Limnephilus	:
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Limnesiidae				Limnesiidae	:
Annelida		Clitellata	Oligochaeta	Lumbriculida		Lumbriculidae				Lumbriculidae	:
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Micropsectra	Micropsectra	:
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Veliidae	Microveliinae		Microvelia	Microvelia	:
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Monopelopia	Monopelopia	:
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Paratanytarsus	Paratanytarsus	
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae			Pisidium	Pisidium	3
Mollusca		Gastropoda		Basommatophora		Planorbidae				Planorbidae	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Polypedilum	Polypedilum	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius	Procladius	4
Mollusca		Gastropoda		Basommatophora		Planorbidae			Promenetus	Promenetus	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius	Psectrocladius	:
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Macropelopiini	Psectrotanypus	Psectrotanypus	:
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae				Sphaeriidae	78
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae			Sphaerium	Sphaerium	
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Tabanidae				Tabanidae	
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini		Tanytarsini	1

WINLAW WOODLOT UPPER (WIN002), 2015-06-30, CABIN wetland, 100% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	Taxon	Sub_Count
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia	Ablabesmyia	19
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Aeshnidae			Aeshna	Aeshna	1
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Arrenuridae			Arrenurus	Arrenurus	32
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis	Callibaetis	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae				Ceratopogonidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae			Ceratopogoninae	12
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Chironomus	Chironomus	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Cladopelma	Cladopelma	5
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Corduliidae				Corduliidae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Dixidae				Dixidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae				Dytiscidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Ephydridae				Ephydridae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Gerridae				Gerridae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Limnephilidae	Limnephilinae	Limnephilini	Limnephilus	Limnephilus	3
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Limnesiidae			Limnesia	Limnesia	7
Annelida		Clitellata	Oligochaeta	Lumbriculida		Lumbriculidae				Lumbriculidae	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Pentaneurini	Monopelopia	Monopelopia	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Chironomini	Parachironomus	Parachironomus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Paratanytarsus	Paratanytarsus	2
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Pionidae			Piona	Piona	1
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae			Pisidium	Pisidium	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Procladiini	Procladius	Procladius	9
Mollusca		Gastropoda		Basommatophora		Planorbidae			Promenetus	Promenetus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Orthocladiinae		Psectrocladius	Psectrocladius	5
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Tanypodinae	Macropelopiini	Psectrotanypus	Psectrotanypus	2
Mollusca		Bivalvia	Heterodonta	Veneroida		Sphaeriidae			Sphaerium	Sphaerium	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Tabanidae				Tabanidae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae	Chironominae	Tanytarsini	Tanytarsus	Tanytarsus	6

BEAVER LAKES (BVL001), 2014-09-08, CABIN wetland, 6% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	Taxon	Sub_Count
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Forcipomyiinae		Atrichopogon	Atrichopogon	43
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae				Baetidae	6
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Forcipomyiinae		Atrichopogon	Bezzia/Palpomyia	14
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Aturidae			Brachypoda	Brachypoda	2
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis	Callibaetis	8
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae				Ceratopogonidae	16
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae				Chironomidae	160
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera						Diptera	1
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae				Dytiscidae	11
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Empididae				Empididae	2
Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Gammaridea	Gammaridae				Gammaridae	1
Mollusca		Gastropod								Gastropod	1
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Polyphaga	Hydraenidae	Hydraeninae	Hydraenini	Hydraena	Hydraena	1
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Lebertiidae			Lebertia	Lebertia	1
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Limnephilidae				Limnephilidae	1
Annelida		Clitellata	Oligochaeta	Lumbriculida		Lumbriculidae				Lumbriculidae	2
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae				Naididae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera					Odonata	1
Annelida		Clitellata	Oligochaeta							Oligochaeta	8
Mollusca		Bivalvia	Heterodonta	Veneroida		Pisidiidae				Pisidiidae	42
Mollusca		Gastropoda		Basommatophora		Planorbidae				Planorbidae	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Psychodidae				Psychodidae	1
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Sperchontidae			Sperchon	Sperchon	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Tabanidae				Tabanidae	1
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera						Trichoptera	1
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes						Trombidformes	1
Annelida		Clitellata	Oligochaeta	Tubificida		Tubificidae				Tubificidae	2

LITTLE SLOCAN LAKES (LSL001), 2014-08-27, CABIN wetland, 8% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	Taxon	Sub_Count
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae				Naididae	3
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Aeshnidae				Aeshnidae	1
Mollusca		Gastropoda		Basommatophora		Ancylidae				Ancylidae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae	Anophelinae		Anopheles	Anopheles	2
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae				Baetidae	10
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Forcipomyiinae		Atrichopogon	Bezzia/Palpomyia	4
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis	Callibaetis	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae				Ceratopogonidae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae				Chironomidae	259
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae				Coenagrionidae	7
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae		Dero	Dero	31
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Dixidae			Dixella	Dixella	2
Annelida		Clitellata	Oligochaeta	Enchytraeida		Enchytraeidae			Enchytraeus	Enchytraeidae	6
Mollusca		Gastropod								Gastropod	1
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Gerridae	Gerrinae		Gerris	Gerris	1
Annelida		Clitellata	Hirudinea	Rhynchobdellida		Glossiphoniidae	Haementeriinae		Helobdella	Helobdella	2
Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Gammaridea	Hyalellidae			Hyalella	Hyalella	5
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Polyphaga	Hydrophillidae			Hydrochus	Hydrochus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Hydroptilidae				Hydroptilidae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Leptoceridae			Ocecetis	Ocectis	1
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Hydroptilidae	Hydroptilinae	Hydroptilini	Oxyethira	Oxyethira	3
Mollusca		Bivalvia	Heterodonta	Veneroida		Pisidiidae				Pisidiidae	4
Arthropoda	Chelicerata	Arachnida	Acari	Sarcoptiformes						Sarcoptiformes	1
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes						Trombidformes	2
Annelida		Clitellata	Oligochaeta	Tubificida		Tubificidae				Tubificidae	8

PASS CREEK COMPLEX (PS002), 2014-08-25, CABIN wetland, 5% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	Taxon	Sub_Count
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae				Naididae	61
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae	Anophelinae		Anopheles	Anopheles	2
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae				Baetidae	130
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Phryganeidae	Phryganeinae		Banksiola	Banksiola	1
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Forcipomyiinae		Atrichopogon	Bezzia/Palpomyia	4
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Furcatergalia	Caenidae				Caenidae	44
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Furcatergalia	Caenidae	Caeninae		Caenis	Caenis	156
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis	Callibaetis	134
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae				Ceratopogonidae	23
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chaoboridae	Chaoborinae		Chaoborus	Chaoborus	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae				Chironomidae	104
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae				Coenagrion/Enallagma	9
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae				Coenagrionidae	31
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Corduliidae			Cordulia	Cordulia	1
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Anisoptera	Corduliidae				Corduliidae	1
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae	Naidinae		Dero	Dero	80
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae				Dytiscidae	1
Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Gammaridea	Gammaridae				Gammaridae	8
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Limnephilidae	Limnephilinae	Chilostigmini	Glyphopsyche	Glyphopsyche	1
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Haliplidae			Haliplus	Haliplus	3
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera		Hemiptera				Hemiptera	1
Arthropoda	Crustacea	Malacostraca	Eumalacostraca	Amphipoda	Gammaridea	Hyalellidae			Hyalella	Hyalella	28
Cnidaria		Hydrozoa				Hydrozoa				Hydrozoa	2
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Notonectidae	Notonectinae	Notonectini	Notonecta	Notonecta	1
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Leptoceridae			Ocecetis	Ocectis	2
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera					Odonata	14
Annelida		Clitellata	Oligochaeta							Oligochaeta	1
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Hydroptilidae	Hydroptilinae	Hydroptilini	Oxyethira	Oxyethira	2
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Furcatergalia	Leptophlebiidae			Paraleptophlebia	Paraleptophlebia	1
Arthropoda	Hexapoda	Insecta	Pterygota	Trichoptera		Phryganeidae				Phryganeidae	3
Mollusca		Bivalvia	Heterodonta	Veneroida		Pisidiidae				Pisidiidae	8
Mollusca		Gastropoda		Basommatophora		Planorbidae				Planorbidae	8
Arthropoda	Chelicerata	Arachnida	Acari	Sarcoptiformes						Sarcoptiformes	1
Annelida		Clitellata	Oligochaeta	Tubificida		Tubificidae				Tubificidae	14

SEATON CR. LOWER (SEAT001), 2014-09-08, CABIN wetland, 5% sample sorted, Kingdom Animalia

Phylum	SubPhylum	Class	SubClass	Order	SubOrder	Family	SubFamily	Tribe	Genus	Taxon	Sub_Count
Annelida		Clitellata	Oligochaeta	Tubificida		Naididae				Naididae	8
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Dytiscidae			Agabus	Agabus	4
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae	Anophelinae		Anopheles	Anopheles	1
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes	Prostigmata	Arrenuridae			Arrenurus	Arrenurus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae				Baetidae	146
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Forcipomyiinae		Atrichopogon	Bezzia/Palpomyia	7
Arthropoda	Hexapoda	Insecta	Pterygota	Ephemeroptera	Pisciforma	Baetidae			Callibaetis	Callibaetis	667
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae	Ceratopogoninae		Ceratopogon	Ceratopogon	3
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Ceratopogonidae				Ceratopogonidae	12
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Chironomidae				Chironomidae	231
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera	Coenagrionidae				Coenagrionidae	25
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Culicidae				Culicidae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Nematocera	Dixidae			Dixella	Dixella	173
Mollusca		Gastropod								Gastropod	2
Arthropoda	Hexapoda	Insecta	Pterygota	Hemiptera	Heteroptera	Gerridae	Gerrinae		Gerris	Gerris	1
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Adephaga	Haliplidae			Haliplus	Haliplus	1
Arthropoda	Hexapoda	Insecta	Pterygota	Coleoptera	Polyphaga	Hydrophilidae				Hydrophilidae	2
Arthropoda	Hexapoda	Insecta	Pterygota	Odonata	Zygoptera					Odonata	15
Mollusca		Bivalvia	Heterodonta	Veneroida		Pisidiidae				Pisidiidae	1
Arthropoda	Chelicerata	Arachnida	Acari	Sarcoptiformes						Sarcoptiformes	2
Arthropoda	Hexapoda	Insecta	Pterygota	Diptera	Brachycera	Tabanidae				Tabanidae	1
Arthropoda	Chelicerata	Arachnida	Acari	Trombidiformes						Trombidformes	3

10.12 Appendix 12: Results of ANCOVA of macroinvertebrate metric versus stress score

	Parameter	Level1	Estimate	StdErr	ChiSquare	t3chisq	p-value
JVar DIV_Simpsons	Intercept		0.4381	0.6291	0.49		
DIV_Simpsons	Stress_score		-0.0114	0.0034	11.44	9.3523	0.00223
DIV_Simpsons	TOC		0.0008	0.0041	0.04	0.0413	0.83894
DIV_Simpsons	Туре	Floodplain	0.052	0.1106	0.22	1.1533	0.76423
DIV_Simpsons	Туре	Lacustrine	0.0335	0.0956	0.12	1.1533	0.76423
DIV_Simpsons	Туре	Palustrine	-0.0871	0.1226	0.51	1.1533	0.76423
DIV_Simpsons	Туре	Riverine	0	0		1.1533	0.76423
DIV_Simpsons	pH		0.1256	0.0981	1.64	1.5877	0.20765
NT_Clitella	Intercept		1.733	2.0777	0.7		
NT_Clitella	Stress_score		-0.027	0.0105	6.54	6.7547	0.00935
NT_Clitella	TOC		-0.0282	0.0161	3.05	3.5844	0.05833
NT_Clitella	Туре	Floodplain	-0.4391	0.391	1.26	4.7452	0.19144
NT_Clitella	Туре	Lacustrine	0.0662	0.308	0.05	4.7452	0.19144
NT_Clitella	Туре	Palustrine	-0.5798	0.4252	1.86	4.7452	0.19144
NT_Clitella	Туре	Riverine	0	0	•	4.7452	0.19144
NT_Clitella	рН		0.2061	0.3084	0.45	0.4444	0.505
PA_Callibaetis	Intercept		0.0769	0.0216	12.7		
PA_Callibaetis	Stress_score		0.0005	0.0001	19.1	14.052	0.00018
PA_Callibaetis	тос		-0.0002	0.0001	1.28	1.25	0.26356
PA_Callibaetis	Туре	Floodplain	-0.005	0.0038	1.7	8.7531	0.03276
PA_Callibaetis	Туре	Lacustrine	-0.0106	0.0033	10.44	8.7531	0.03276
PA_Callibaetis	Туре	Palustrine	-0.0066	0.0042	2.46	8.7531	0.03276
PA_Callibaetis	Туре	Riverine	0	0	•	8.7531	0.03276
PA_Callibaetis	рН		-0.0041	0.0034	1.51	1.4653	0.22609
PA_CG	Intercept		0.1874	0.0277	45.61	•	•
PA_CG	Scale		0.008	0.0012	-		
PA_CG	Stress_score		0.0004	0.0001	7.67	6.6555	0.00988
PA_CG	тос	F1 1 1 1	-0.0004	0.0002	6	5.3554	0.02066
PA_CG	Туре	Floodplain	-0.0029	0.0049	0.35	5.7064	0.1268
PA_CG	Туре	Lacustrine Palustrine	-0.0033	0.0042	6.38	5.7064 5.7064	0.1268
PA_CG PA_CG	Туре Туре	Riverine	-0.0137	0.0034		5.7064	0.1268
PA_CG	рН	Rivernie	-0.0145	0.0043	. 11.32	9.2704	0.00233
NT_HBIS	Intercept		-0.8811	2.2046	0.16		
NT_HBIS	Stress_score		-0.0239	0.012	3.97	4.0721	0.0436
NT_HBIS	TOC		-0.0033	0.0148	0.05	0.0509	0.82158
NT_HBIS	Туре	Floodplain	-0.0907	0.4041	0.05	0.6602	0.88252
NT_HBIS	Туре	Lacustrine	0.0319	0.3338	0.01	0.6602	0.88252
NT_HBIS	Туре	Palustrine	-0.2956	0.443	0.45	0.6602	0.88252
NT_HBIS	Туре	Riverine	0	0		0.6602	0.88252
NT_HBIS	рН		0.4446	0.338	1.73	1.7171	0.19006
PD_Amph_BCG	Intercept		-0.0029	0.0299	0.01	•	•
PD_Amph_BCG	Stress_score		-0.0003	0.0002	3.22	3.0172	0.08239
PD_Amph_BCG	тос		0.0001	0.0002	0.18	0.1808	0.67068
PD_Amph_BCG	Туре	Floodplain	-0.0037	0.0053	0.5	13.7621	0.00325
PD_Amph_BCG	Туре	Lacustrine	0.0094	0.0046	4.26	13.7621	0.00325

SWAMP: Wetland Invertebrate Assessment Tool

PD_Amph_BCG	Туре	Palustrine	-0.014	0.0058	5.76	13.7621	0.00325
PD_Amph_BCG	Туре	Riverine	0	0	•	13.7621	0.00325
PD_Amph_BCG	рН		0.013	0.0047	7.76	6.7214	0.00953

PA=Percent abundance, NT=No. of Taxa, Percent data was transformed with Anscombe's Arcsin(sqrt()), Count data transformed using Ln(x+1).

10.13 Appendix 13: Update on FWCP project condition re: IBI-based evaluation of restoration sites.

	Possible restoration site or site of interest	Interest by owner in restoration works	On ground inspection or assessment	Restoration/Conservation potential	Wetland stress score	IBI score
ELI001	Side channels nr. Lemon Creek & Slocan islands	Good	Site visit by invertebrate team in 2015	Restoration, site visit by invertebrate team, possible stream restoration potential	None	None
ELD001	Island Oxbow	Unknown	Sampled for invertebrates	Wetland Restoration	68.0	47.2
BLU001	Wetland complex, side channel	Unknown	Inspection by Slocan Streamkeepers	Wetland Restoration	None	None
FO001	Fominoff's field, large wetland complex	Unknown	Rail to Trail site sampled for invertebrates	Restoration, streamkeepers have carried out riparian planting, Further restoration potential	63.4	59.7
FRA001	Side channel, residual Oxbow	Cattle issues, fencing in place	Inspection by Slocan Streamkeepers, sampled for invertebrates	Restoration	60.2	68.8
SPA001	Temporary wetlands	High	Assessed by Thomas Biebighauser July 4, 2014 (attached).	Wetland restoration funding obtained, restoration works planned, invertebrate sampling planned in 2016 (before and control sites including Schneider's cattail wetland as a nearby control)	2016	2016
SEAT001, SEAT002, SEAT003	Seaton Creek/Threeforks wetlands	Unknown	Sampled for invertebrates in 2014 & 2015 assessed by Durand (2015).	Impacted by legacy mining.	SEAT001 (83.8) SEAT002 (85.7) SEAT003 (87.4)	SEAT001 (23.1) SEAT002 (11.0) SEAT003 (0)
BON001	Bonanza Creek wetland	Unknown	Sampled for invertebrates 2015, further sampling in 2016	Conservation, candidate property for Nature Trust, weed control required, further sampling on west side of wetland)	BON001 (73.3) 2016	BON001 (59.7) 2016
SUM001 SUM002	Wetlands associated with Summit Lake	Unknown	Sampled for invertebrates in 2015 (two sites)	Conservation, candidate property for Nature Trust	SUM001 (72.2) SUM002 (62.6) 2016	SUM001 (43.4) SUM002 (76.1) 2016

Update on possible restoration sites or sites of interest as suggested by community

'Based on interviews with Gregoire Lamoureux, Jennifer Yeow, Rhia MacKenzie & Richard Johnson and site visits in 2015 by the invertebrate team. Wetland stress scores vary from 0 (no stress) to 100 (maximum stress).. IBI varies from 100 (high biological integrity) to 0 (low biological integrity). Reference condition is indicated by wetland stress of less than 25 and IBI greater than 55. Scores indicated in red fall outside reference condition. These scores may change in future reporting after incorporating further data.

Note: Further IBI-based management recommendations will be developed by the end of April, 2016 for the draft of the National Wetland Conservation Fund report.

11 Technical Reports

11.1 Technical Report, Opus: Analysis of water quality using Stiff diagrams

411 Derosa Drive New Denver, BC VOG 1S1

Tollfree (877) 266-6126 Telephone (250) 358-2590 Faceimile (250) 358-2591

Using Stiff Diagrams

to characterize

Surface Water Samples

from Wetlands in the Slocan Watershed

West Kootenay Area, British Columbia

Prepared for:

Slocan River Streamkeepers, Slocan Solutions Society,

Slocan Lake Stewardship Society and BC Wildlife Federation

under the

Slocan Valley Wetlands Assessment and Mapping Project (SWAMP)

Prepared by: Richard Johnson, P.Eng.

February 26, 2016

INTEGRATED ECOLOGICAL RESEARCH

Table of Contents

Introduction	3
Summary	3
Conclusions	4
Discussion	4
Recommendations for Further Study	7
References	8
Appendices	
Appendix A: Stiff Diagram report pages	
Appendix B: Graph of TDS vs Conductivity	

Appendix C: Sample Site Locations

Introduction

Opus processed the water analyses from 21 surface water samples taken during the benthic sampling program associated with the SWAMP wetland assessment project in the summer of 2015. The major ions were plotted on Stiff diagrams for visualization and comparison. All Stiff diagrams are included in Appendix A in order of increasing TDS.

A graph plotting the Specific Conductivity against Total Dissolved Solids (TDS) showed good correlation at Specific Conductivities below 250 μ S/cm. and is included as Appendix B.

This report discusses our professional interpretation of these diagrams and graph.

Summary

- 1. The Stiff diagram method of comparing water analyses proved to be a simple system for identifying large abnormal components in the surface water analyses and can be used as a "first pass" indicator of the water quality as it relates to wetland health.
- 2. We found that all analyses exhibited typical Calcium-Bicarbonate surface water ion assemblages. The TDS can be looked at as a measure of the "age" of the water. Those waters having a simple, surface flow to the wetland are fresher than those having a longer flow path. In the latter case the flow is often underground.
- 3. The higher TDS samples often indicated human induced influences along the water flow path. In particular higher than expected concentrations of Sodium, Chloride and Iron ions are indicators of these influences.
- 4. The TDS graded from extremely fresh, TDS of 18 mg/l, to one abnormal sample of 415 mg/l. The latter sample had a high content of Sodium and Chloride ions, probably caused by runoff from the adjacent developments or highway.
- 5. A sample from the Bonanza marsh had high Calcium and Sulfate concentrations and the second highest TDS of 409 mg/l of the 21 analyses. This could be human induced or a natural assemblage if there is anhydrite in the limestone over and through which the water has flowed.
- 6. Several samples showed a high Nitrate concentration, which is not plotted on a normal Stiff diagram, but is recorded on the Opus form. The samples from Beaver Lakes and Little Slocan Lakes wetlands showed this variation.
- 7. As expected, TDS correlates with Conductivity. A graph showing this correlation is included as Appendix B. It shows the best fit straight line and its equation, "TDS = 0.91*Cond +.41". This equation should be valid for most waters in this watershed below a conductivity of 250 μ S/cm. Analyses showing TDS higher than 250 μ S/cm. should be looked at in more detail to see what is causing the higher TDS.
- 8. The graph or the equation can be used to obtain an approximate TDS value from future conductivity measurements of wetlands in the Slocan Watershed. This can indicate if significant changes in the major ions have occurred since the previous sampling of water from a wetland. The trace metals are in such low concentrations that changes in these will not be reflected in the conductivity so abnormalities in these ions have to be investigated separately. The conductivity can also be used to indicate when a complete analysis is needed.

Conclusions

- 1. The waters in the Slocan watershed are all similar because of the bedrock geology and short residence time in the aquifers. Other natural influences are soils and temperature/altitude.
- 2. All the water samples are Calcium Bicarbonate Type waters. The TDS of this water type is mostly controlled by the partial pressure of Carbon Dioxide. Variations in the trend indicate solution of other salts, often created by human actions.
- 3. The Stiff diagrams simplify the handling of the major ions in an analysis but do not address the more detailed work that needs to be done because the trace metals have a high impact on benthic invertebrates and other aquatic life.
- 4. The measurement of conductivity in the field can be used to determine which waters need to have complete analyses and which wetlands have changed since previous sampling. This will save money.
- 5. Each wetland should be characterized with respect to its hydrogeological setting, relating the vegetation, elevation, hydrology, geomorphology, soils, geology and chemistry to the whole drainage area. Since these parameters can be obtained from existing data banks and satellite images, this characterization can be used as a tool to predict the location of similar wetlands.
- 6. The analyses need to be looked at in more detail with respect to the metals and the organics. In particular the eH (redox) potentials should be estimated and related to the metal solubilities.

Discussion

Opus transferred the data from a spreadsheet, provided by Integrated Ecological Research (IER), to its plotting program to better compare various parameters and plot the ion assemblage on a "Stiff diagram". The Stiff diagram is a graphical representation of the ion concentrations (Stiff, H.A., 1951). The original work used a linear scale to represent the ion concentrations. Modern labs present their results using a logarithmic scale to fit oilfield brines onto the diagram and onto a single page. Opus plots the ion concentrations, in milliequivalents, using a logarithmic scale and adds an axis for Potassium.

Although the Opus plotting program does not normally present the Nitrate concentration, we have modified our plotting page for this study to highlight the Nitrate. Darcie Quamme of IER noted the higher Nitrate concentrations in the Beaver Lake samples, BVL002 and BVL003. There is also high Nitrate concentration in the water sample from Little Slocan Lake (LWL001).

The Bicarbonate has been calculated at 1.22 times the Alkalinity. The lab measures alkalinity by acid titration and the result is presented "mg/l as CaCO3". Since all of the samples have a pH that is lower than 8.4 there is no measurable concentration of Carbonate (CO3) ions. Although alkalinity can be affected by other ions, the Bicarbonate ion is the dominant control. Opus has converted the Alkalinity to HCO3 for this presentation.

The shape of the Stiff plot is used by Opus to "fingerprint" waters. We have used the system on thousands of waters to fingerprint most of the subsurface waters in Western Canada by formation

name and have published that study under the title of "Formation Waters of Western Canada" (Johnson and Johnson, 1992). The system works well on surface waters and is simpler and more useful to use than Piper diagrams (Piper, 1944) or Durov diagrams (Durov, 1948).

The 21 samples in this study are all typical surface waters which are Calcium-Bicarbonate type waters. The term "Calcium-Bicarbonate" is a descriptor used in the hydrogeology community to describe a water based upon the dominant cation and anion. All of the samples are below the Canadian and US drinking water standard of 500 mg/l. The human palate does not usually notice ion concentrations until the 1500 mg/l range (Personal experience ... taste plain San Pelligrino (940 mg/l) bottled water or Gerolsteiner (2488 mg/l).

The TDS of Calcium Bicarbonate waters can be thought of a measure of the "age" of the water. Precipitation falling upstream from a wetland reaches the wetland in three ways. The simplest is surface run off. The next is travel through the soil. The third way that water reaches a wetland is through aquifer flow below the soil. The latter is the most complex and the slowest and gives the most time and opportunity for increased TDS concentration. A variation of this is probably happening in the Bonanza Marsh where subsurface water is coming to the surface through a fractured limestone bedrock.

Water moving underground is initially affected by the higher concentration of Carbon Dioxide in the soil which is controlled by temperature and depth (CO2 partial pressure). It also has more opportunity to dissolve salts and other material from the soil and/or aquifer. This is fully explained in Kehew (2001).

In the analyses described in this study we can see that the analyses from the Gander Creek and Cooley Lake are very fresh. These are high elevation sites (over 1500 m. ASL) with small drainage areas, thus short flow paths. Bear Lake and Seaton Creek are the second highest group around 1000 m. ASL. but these have been impacted by mining.

Little Wilson Lake and Beaver Lake are at a similar elevation and show similar waters. Little Slocan Lake is only at 650 m. ASL but is fresher than the Beaver Lake/Little Slocan Lake waters which are in a valley with a larger soil component and longer residence time.

The two samples above Winlaw are at an elevation of about 1000 m. ASL but appear to be affected by human activity rather than drainage basin (small) or elevation. The remaining samples come from complex areas with aquifers and human influences.

A copy of a spreadsheet from Durand Ecological Ltd. is attached, as Appendix C, showing the wetland location and elevation with an added column showing the TDS for the various wetland sites. Detailed work relating various hydrogeomorphic parameters and wetland classifications to the water sample sites can be found in the appendices in Durand (2016).

The Stiff diagrams and the associated data are included in Appendix A, in order of increasing TDS. One can see the area of the enclosed space, inside the Stiff diagram lines, increase while the overall

shape develops from a "diamond" into a "kite". Variations in the samples often indicate contributions from human activity. In particular Sodium, Chloride and Iron are not normal constituents of the waters in the Slocan watershed. The sample F0001 (Fomi's) shows human created contamination. It is probably Sodium Chloride from surface run-off from the nearby residences, the rail trail or the highway above the site. The analysis, BON001, was a sample taken in Bonanza Marsh. It shows a high Sulfate concentration when compared to the other samples in this study. Bonanza Marsh is fed by springs and streams flowing over a fractured limestone bedrock. Although the Sodium is noticeable, the cation balancing the Sulfate is probably Calcium, indicating a gypsum or anhydrite source. This may from be normal dissolution of these minerals in the limestone, or may be manmade.

The "Ion Balance" is calculated on each Opus page and is printed below the Stiff diagram on the right-hand side of the page. The sum of the milliequivalents of the cations should equal the sum of the milliequivalents of the anions because water has to have the same number of positive charges as negative charges. In saline waters it is usually within 10% but varies so much of fresh waters that we have not found it useful.

All of the samples have a conductivity measurement recorded by the lab. The conductivity shown is called the Specific Conductivity if it is measured at or corrected to 25 degrees Celsius. The conductivity instrument measures the conductivity accurately at the temperature of the sample. If that temperature is not 25 degrees then the internal computer in the instrument corrects it to 25 degrees using an algorithm. The instruments we have worked with use an algorithm based upon Potassium Chloride, so these instruments do not correct accurately for a water sample in which the dominant ions are Calcium and Bicarbonate (Personal measurements with a Hanna meter). That being said, the instrument error is not significant enough to worry about for our purposes in this type of study.

The conductivity of a solution is dependent upon the ionic components in it. Sodium, Potassium and Chloride all produce similar a similar response to an electrical current. Bicarbonate and the divalent ions are less conductive. This means that a solution carrying large amounts of the latter ions can have a greater TDS yet still measure the same conductivity as a solution of pure Sodium Chloride. This is why we cannot measure the conductivity of a water sample and determine the TDS content directly from that measurement. However, for the waters in this area (Calcium Bicarbonate type), we can estimate TDS fairly closely.

We plotted the Total Dissolved Solids of the samples against the conductivity and have included it as Appendix B. This graph can be used to estimate the TDS for waters, in the Slocan watershed, that are similar to the ones in this sample group that are below a Specific Conductivity of 250 μ S/cm. The equation of best fit straight line is "TDS = 0.91 * Conductivity + 0.41". In Durand (2016) there are numerous field measurements of conductivity which can be used to help evaluate the health of these other wetlands

This graph can be updated with conductivities from future sampling and give more accurate results, however we should note that when a surface water is mixed with Sodium Chloride or Gypsum/Anhydrite, as are two of the samples in this study, they should not be used in defining the correlation for our typical Calcium Bicarbonate surface waters.

It should also be noted that the trace metals in these samples are in such small concentrations that they have an insignificant effect on the conductivity compared to the nine ions plotted on the Stiff diagram. Nitrate and Phosphate ions, being charged, have an effect on the conductivity if their concentration is high enough.

Recommendations for further study

- 1. There are other samples of waters that have been analyzed in the Slocan watershed. These should be searched out and added to these data. The resulting data bank should be made available to everyone working on waters in this area.
- 2. Further work should be done to relate the other metals in these analyses to the bedrock and soils through which the water has travelled to reach the sample sites as well as human disturbances upstream.
- 3. Sampling should continue on these same sites in future years. These data can be used to monitor changes in the wetlands and be integrated into the benthic analyses being done by Integrated Ecological Research.
- 4. Even if full analyses are not performed on these sites, visitors should take conductivity and pH measurements whenever they are in the area. Changes in these two parameters can alert us to changes in the composition of the water.
- 5. These data should integrated into water quality monitoring, aquifer mapping, and wetland assessment work being done by the SWAMP collaborative and the SWAMP Multimetric Index of Biotic Integrity work.

References

Durand, R., 2016, "SWAMP Phase 3, Slocan Wetland Monitoring and Assessment Project", Durand Ecological Ltd.

Durov, S. A., 1948, "Classification of Natural Waters and Graphic Representation of their Composition (in Russian), DokladyAk .Nauk SSR v. 59, no. 1, pp. 87-90.

Johnson, R.H. and Johnson, S.O., 1992, "Formation Waters of Western Canada", Opus Petroleum Engineering Ltd.

Kehew, A.E., 2001, "Applied Chemical Hydrogeology", Prentice Hall.

Piper, A. M., 1944, "A graphic procedure in the geochemical interpretation of water analyses", Transactions American Geophysical Union, 25, 914–928.

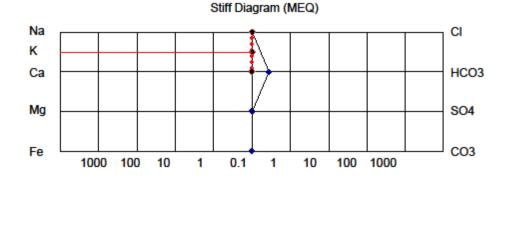
Stiff, H. A., Jr., 1951. "The interpretation of chemical water analysis by means of patterns" Journal of Petroleum Technology, v. 3. no.10.

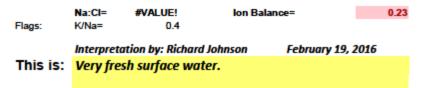
Appendix A

Attached to

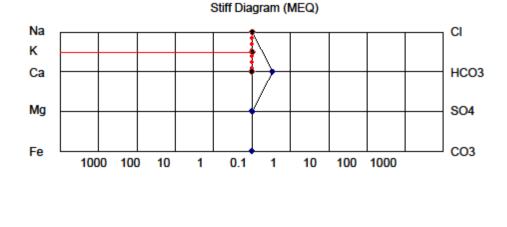
Using Stiff Diagrams

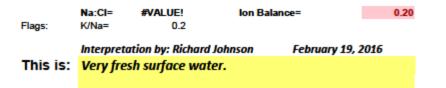
to characterize

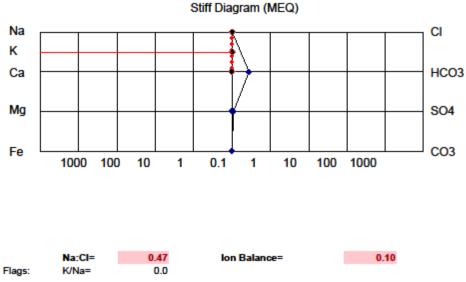

Surface Water Samples

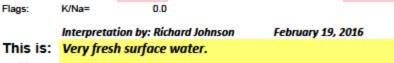

from Wetlands in the Slocan Watershed

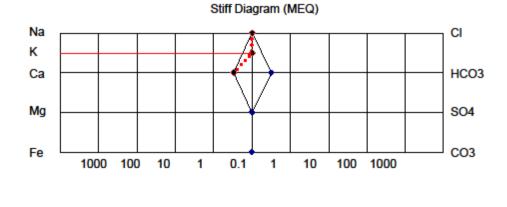
West Kootenay Area, British Columbia

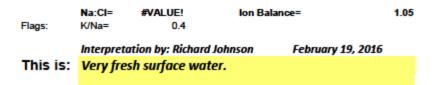

Stiff Diagrams

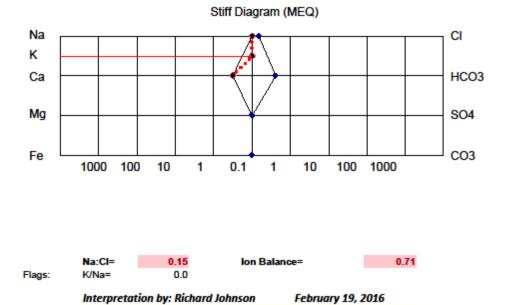

Sample ID: Date Sample Lab ID:	ed 507070)5-03	CL 001 09-Jul-15	Date Rece	Location: eived	10-Jul-15				
Remarks:	North 548240	-	Easting 453242							
Cations		Mg/l	MEQ		Anions		Mg/l		MEQ	
Na		0.5	0.0		CI	<0.10		<0.10		
к		0.3	0.0		Br					
Ca	<2.0		0.0		1					
Mg		0.4	0.0		HCO3		16.7		0.3	
Ba	<0.05		0.0		SO4	<1.0		<1.0		
Sr		0.02	0.0		CO3					
Fe	<0.10		0.0		Nitrate	<0.010			0.0	
Total		1	0.1		Total		17		0.3	
TDS calc=	18	3	Density=		25 deg C	Conduct:			16.4	1
TDS evap=			Refrac=		25 deg C	pH			6.7	
TDS ign=			TDS evap	@180=		Hardness	к			



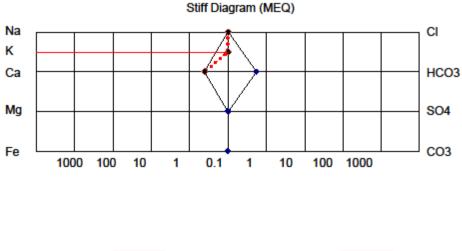

Sample ID: Date Sample Lab ID: Remarks:	ed 5070705-0 Northing 5480369	GC 001 09-Jul-15 Easting 452213	Date Rece	Location: eived	10-Jul-15			
Cations	Mg/	I MEQ		Anions		Mg/I	MEQ	
Na	0.0	3 0.0		CI	<0.10		<0.10	
к	0.3	3 0.0		Br				
Ca	<2.0	0.0		1				
Mg	0.3	3 0.0		HCO3		20.9	0.3	
Ba	<0.05	0.0		SO4		1	0.0	
Sr	0.0	ŧ 0.0		CO3				
Fe	0.2	1 0.0		Nitrate	<0.010		0.0	
Total	:	2 0.1		Total		22	0.4	
TDS calc=	24	Density=		25 deg C	Conduct:		16.9	25 deg C
TDS evap=		Refrac=		25 deg C	pН		6.5	25 deg C
TDS ign=		TDS evap	@180=		Hardness	e [mg/l as CaCO3

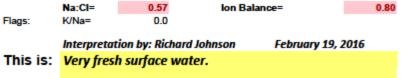


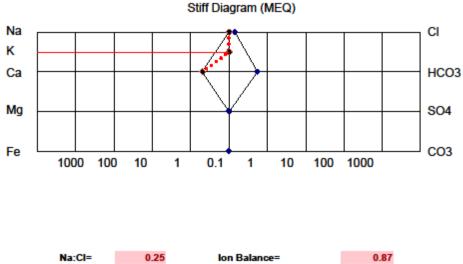

Sample ID: Date Sample Lab ID: Remarks:	ed 5070705-0 Northing 5479637	GC 002 09-Jul-15 2 Easting 452715	Date Rece	Location: eived	10-Jul-15		
Cations	Mg			Anions	Mg		
Na	0.	7 0.0		CI	2.2	9 0.1	
к	<0.2	0.0		Br			
Ca	<2.0	0.0		1			
Mg	0.	1 0.0		HCO3	16.	7 0.3	
Ba	<0.05	0.0		SO4	5.	2 0.1	
Sr	0.0	1 0.0		CO3			
Fe	0.3	5 0.0		Nitrate	<0.010	0.0	
Total		1 0.0		Total	2	4 0.4	
TDS calc=	25	Density=		25 deg C	Conduct:	8.6	25 deg C
TDS evap=		Refrac=		25 deg C	pН	6.5	25 deg C
TDS ign=		TDS evap	@180=		Hardness:		mg/l as CaCO

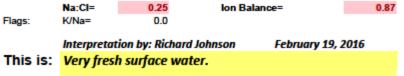


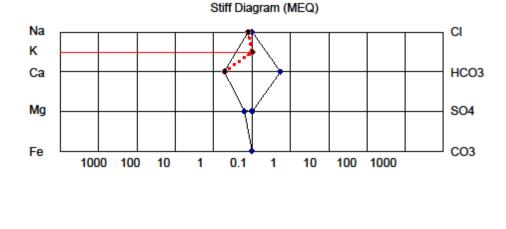
Sample ID:		LSL002		Location:		
Date Sample Lab ID:	ed 5071169-01	15-Jul-15	Date Rece	eived	17-Jul-15	
Remarks:	Northing	Easting				
	5501110	451350				
Cations	Mg/I	MEQ		Anions	Mg/I	MEQ
Na	0.8	0.0		CI	<0.10	<0.10
к	0.5	0.0		Br		
Ca	6	0.3		1		
Mg	0.5	0.0		HCO3	19.5	0.3
Ba	<0.05	0.0		SO4	2.6	0.1
Sr	0.02	0.0		CO3		
Fe	0.2	0.0		Nitrate	0.01	0.0
Total	8	0.4		Total	22	0.4
TDS calc=	30	Density=		25 deg C	Conduct:	38.0
TDS evap=		Refrac=		25 deg C	pН	7.3
TDS ign=		TDS evap	@180=		Hardness:	17.0

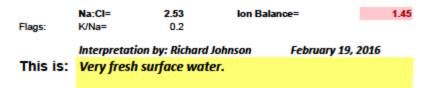

Sample ID: Date Sample Lab ID: Remarks:	ed 5072178-05 Northing 5560293	BVL003 29-Jul-15 Easting 464563	Date Rece	Location:	31-Jul-15		
<u>Cations</u> Na	<u>Mg/</u> 0.5			<u>Anions</u> Cl	<u>Mg/l</u> 5.24		
K Ca	<0.2 6.3	0.0		Br I			
Mg Ba	0.7 0.07			HCO3 SO4	25.0 1	0.4 0.0	
Sr Fe	0.43 0.38			CO3 Nitrate	0.09	0.0	
Total	8	0.4		Total	31	0.6	
TDS calc= TDS evap=	40	Density= Refrac=		25 deg C 25 deg C	Conduct: pH	6.7	25 deg C 25 deg C
TDS ign=		TDS evap	@180=		Hardness:	18.7	mg/l as CaCO3

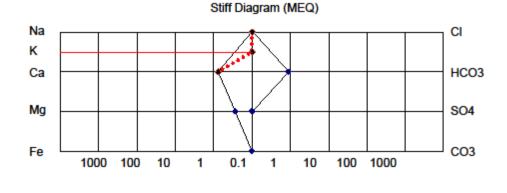


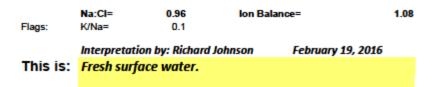

This is: Very fresh surface water.

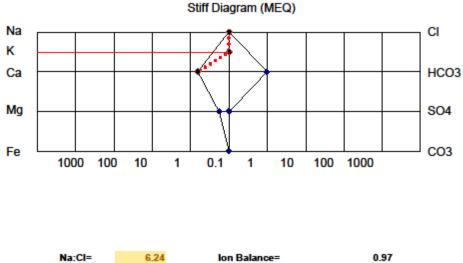

Sample ID: Date Sample Lab ID: Remarks:	ed 5072178-01 Northing 5564499	LWL001 29-Jul-15 Easting 459540	Date Rece	Location:	31-Jul-15		
Cations	Mg/	MEQ		Anions	Mg/I	MEQ	
Na	0.9	0.0		CI	2.44	0.1	
к	<0.2	0.0		Br			
Ca	8.2	2 0.4		1			
Mg	0.9	0.1		HCO3	33.4	0.5	
Ba	<0.05	0.0		SO4	2.4	0.0	
Sr	0.27	0.0		CO3			
Fe	0.14	· 0.0		Nitrate	0.12	0.0	
Total	10	0.5		Total	38	0.7	
TDS calc=	49	Density=		25 deg C	Conduct:	55.5	25 deg C
TDS evap=		Refrac=		25 deg C	pН	7.3	25 deg C
TDS ign=		TDS evap	@180=		Hardness:	24.4	mg/l as CaCO

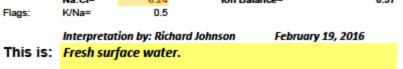


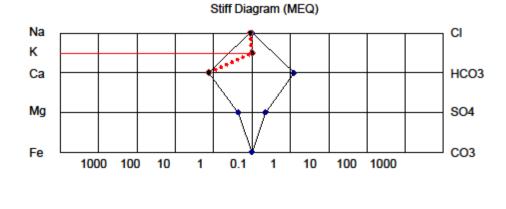

Sample ID: Date Sample Lab ID: Remarks:	ed 5072178-03 Northing 5560619	BVL002 29-Jul-15 Easting 464692	Date Rece	Location: eived	31-Jul-15		
Cations	Mg/	MEQ		Anions		Mg/l	MEG
Na	0.8	8 0.0		CI		4.97	0.1
к	<0.2	0.0		Br			
Ca	9.9	0.5		1			
Mg	0.6	0.0		HCO3		33.4	0.5
Ba	0.09	0.0		SO4	<1.0		<1.0
Sr	0.74	0.0		CO3			
Fe	<0.10	0.0		Nitrate		0.11	0.0
Total	12	2 0.6		Total		38	0.7
TDS calc=	51	Density=		25 deg C	Conduct:		54.2
TDS evap=		Refrac=		25 deg C	pH		6.9
TDS ign=		TDS evap	@180=		Hardness	2	27.5

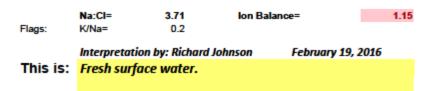


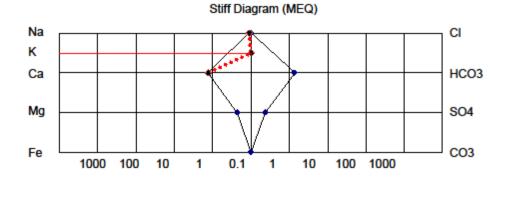

Sample ID: Date Sample Lab ID: Remarks:	ed 5070338-03 Northing 5495161	WIN 002 06-Jul-15 Easting 462757	Date Rece	Location: eived	07-Jul-15			
Cations	Mg/I	MEQ		Anions		Mg/I	ME	Q
Na	2.9	0.1		CI		1.77	0	0
К	1.1	0.0		Br				
Ca	10.4	0.5		1				
Mg	1.9	0.2		HCO3		32.9	0	5
Ba	0.07	0.0		SO4	<1.0		<1.0	
Sr	0.38	0.0		CO3				
Fe	1.03	0.0		Nitrate	<0.010		0	0
Total	18	0.9		Total		35	0	6
TDS calc=	52	Density=		25 deg C	Conduct:		61	0
TDS evap=		Refrac=		25 deg C	pН		7	0
TDS ign=		TDS evap	@180=		Hardness	c .	33	8

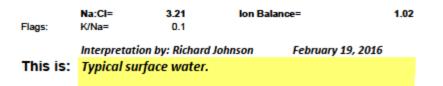


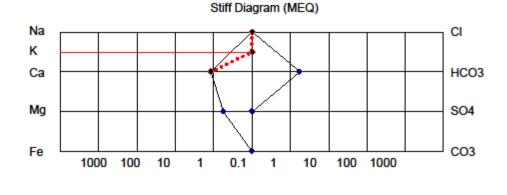

Sample ID: Date Sample Lab ID: Remarks:	ed 5070941-01 Northing 5482263	HAY 001 14-Jul-15 Easting 457573	Date Rece	Location: eived	14-Jul-15		
Cations	Mg/I	MEQ		Anions	Mg	1/I MEQ	
Na	2.3	0.1		CI	3	.7 0.1	
к	0.2	0.0		Br			
Ca	15.2	0.8		1			
Mg	3.3	0.3		HCO3	54	.3 0.9	
Ba	<0.05	0.0		SO4	3	.7 0.1	
Sr	0.15	0.0		CO3			
Fe	1.17	0.0		Nitrate	<0.010	0.0	
Total	22	1.2		Total	6	52 1.1	
TDS calc=	84	Density=		25 deg C	Conduct:	99.6	25 deg C
TDS evap=		Refrac=		25 deg C	pH	6.9	25 deg C
TDS ign=		TDS evap	@180=		Hardness:	51.6	mg/l as CaCO

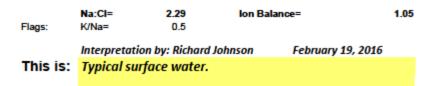


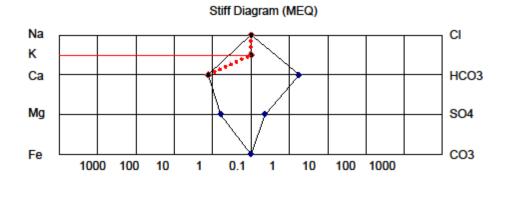

Sample ID: Date Sample Lab ID: Remarks:	ed 5070941-03 Northing 5492379	FRA 001 14-Jul-15 Easting 455226	Date Rece	Location: eived	14-Jul-15		
Cations	Mg/I			Anions	Mg/		
Na	1.7			CI	0.43	2 0.0	
к	1.4	0.0		Br			
Ca	12.9	0.6		1			
Mg	2.2	0.2		HCO3	58.4	4 1.0	
Ba	<0.05	0.0		SO4	4.3	B 0.1	
Sr	0.19	0.0		CO3			
Fe	5.56	0.1		Nitrate	<0.010	0.0	
Total	24	1.0		Total	6	4 1.1	
TDS calc=	88	Density=		25 deg C	Conduct:	79.9	25 deg C
TDS evap=		Refrac=		25 deg C	pН	7.2	25 deg C
TDS ign=		TDS evap	@180=		Hardness:	41.0	mg/l as CaCO

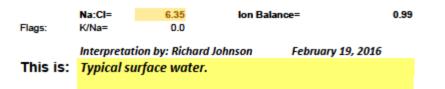

Sample ID: Date Sample Lab ID: Remarks:	ed 5071519-01 Northing 5555073	SUM001 19-Jul-15 Easting 456568	Date Rece	Location:	22-Jul-15		
Cations	Mg/I	MEQ		Anions	Mg/I	MEQ	
Na	2.6	0.1		CI	1.08	0.0	
к	0.8	0.0		Br			
Ca	26.6	1.3		1			
Mg	2.8	0.2		HCO3	75.0	1.2	
Ba	<0.05	0.0		SO4	10.8	0.2	
Sr	0.33	0.0		CO3			
Fe	0.25	0.0		Nitrate	0.02	0.0	
Total	33	1.7		Total	87	1.5	
TDS calc=	120	Density=		25 deg C	Conduct:	143.0	25 deg C
TDS evap=		Refrac=		25 deg C	pН	7.3	25 deg C
TDS ign=		TDS evap	@180=		Hardness:	78.0	mg/l as CaCO3

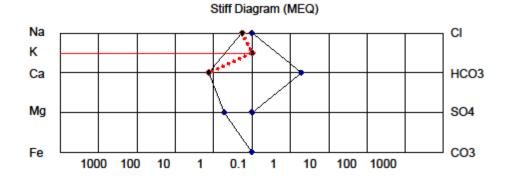


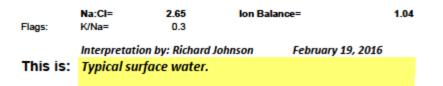

INTEGRATED ECOLOGICAL RESEARCH

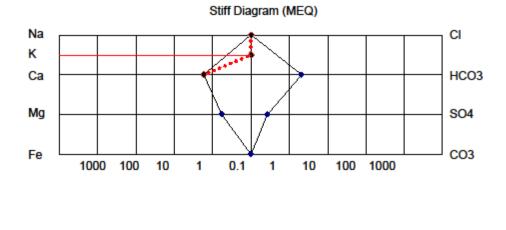

Sample ID: Date Sample Lab ID: Remarks:	ed 5071519-05 Northing 5555285	SUM002 21-Jul-15 Easting 455800	Date Rece	Location:	22-Jul-15		
Cations	Mg/I	MEQ		Anions	Mg/I	MEQ	
Na	2.6	0.1		CI	1.25	0.0	
к	0.4	0.0		Br			
Ca	26.2	1.3		1			
Mg	2.8	0.2		HCO3	83.4	1.4	
Ba	<0.05	0.0		SO4	11.2	0.2	
Sr	0.33	0.0		CO3			
Fe	0.29	0.0		Nitrate	<0.010	0.0	
Total	33	1.7		Total	96	1.6	
TDS calc=	129	Density=		25 deg C	Conduct:	137.0	25 deg C
TDS evap=		Refrac=		25 deg C	pH	7.7	25 deg C
TDS ign=		TDS evap	@180=		Hardness:	77.0	mg/l as CaCO3



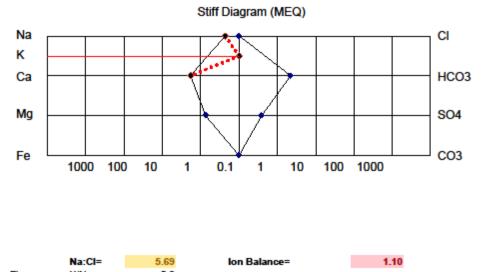

Sample ID: Date Sample Lab ID: Remarks:	ed 5070338-02 Northing 5494995	WIN 001 06-Jul-15 Easting 461820	Date Rece	Location: eived	07-Jul-15	,		
Cations	Mg/I	MEQ		Anions		Mg/I	MEG	2
Na	1.9	0.1		CI		1.28	0.0)
к	1.5	0.0		Br				
Ca	23.5	1.2		1				
Mg	6.8	0.6		HCO3		106.1	1.7	7
Ba	0.13	0.0		SO4	<1.0		<1.0	
Sr	0.4	0.0		CO3				
Fe	0.19	0.0		Nitrate	<0.010		0.0)
Total	34	1.9		Total		107	1.0	8
TDS calc=	142	Density=		25 deg C	Conduct	:	165.0)
TDS evap=		Refrac=		25 deg C	pH		7.0	3
TDS ign=		TDS evap	@180=		Hardnes	5:	86.7	7

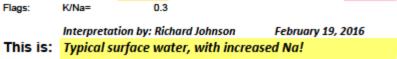


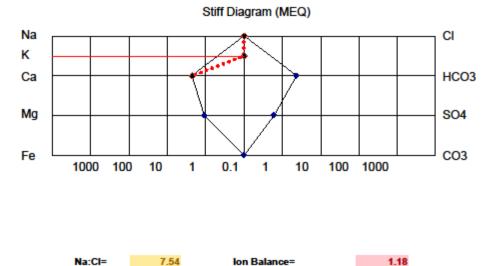

Sample ID: Date Sample Lab ID: Remarks:	ed 5071060-03 Northing 5543400	BEAR001 14-Jul-15 Easting 486333	Date Rece	Location:	15-Jul-15		
Cations	Mg/I	MEQ		Anions	Mg/I	MEQ	
Na	1.4	0.1		CI	0.34	0.0	
к	<0.2	0.0		Br			
Ca	26	1.3		1			
Mg	7.5	0.6		HCO3	108.5	1.8	
Ba	<0.05	0.0		SO4	11.1	0.2	
Sr	0.22	0.0		CO3			
Fe	0.92	0.0		Nitrate	<0.010	0.0	
Total	36	2.0		Total	120	2.0	
TDS calc=	156	Density=		25 deg C	Conduct:	169.0	25 deg C
TDS evap=		Refrac=		25 deg C	pH	8.2	25 deg C
TDS ign=		TDS evap	@180=		Hardness:	95.7	mg/l as Cal

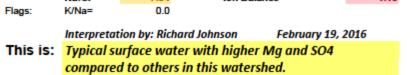


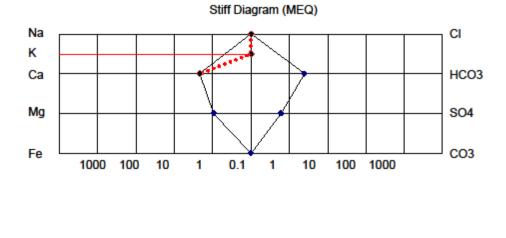
Sample ID: Date Sample Lab ID: Remarks:	ed 5070941-04 Northing 5502111	ELD 001 14-Jul-15 Easting 462894	Date Rece	Location: eived	14-Jul-15	
Cations	Mg/I			Anions	Mg/I	MEQ
Na	4.2			CI	2.44	0.1
к	2	0.1		Br		
Ca	26.6	1.3		1		
Mg	6.4	0.5		HCO3	116.9	1.9
Ba	0.07	0.0		SO4	1.6	0.0
Sr	0.39	0.0		CO3		
Fe	0.38	0.0		Nitrate	<0.010	0.0
Total	40	2.1		Total	121	2.0
TDS calc=	161	Density=		25 deg C	Conduct:	173.0
TDS evap=		Refrac=		25 deg C	pН	7.5
TDS ign=		TDS evap	@180=		Hardness:	92.8

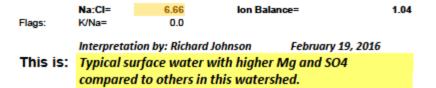


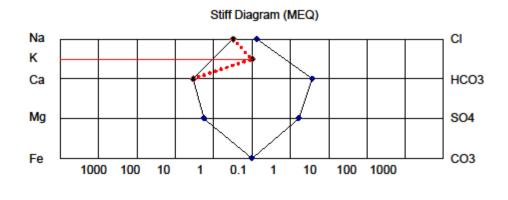

Sample ID: Date Sample Lab ID: Remarks:	ed 5071060-01 Northing 5542680	SEAT001 15-Jul-15 Easting 485047	Date Rece	Location:	15-Jul-15		
Cations	Mg/I	MEQ		Anions	Mg/I	MEQ	
Na	1.8	0.1		CI	0.51	0.0	
к	<0.2	0.0		Br			
Ca	33.8	1.7		1			
Mg	7	0.6		HCO3	125.2	2.1	
Ba	<0.05	0.0		SO4	12.6	0.3	
Sr	0.23	0.0		CO3			
Fe	0.24	0.0		Nitrate	0.05	0.0	
Total	43	2.4		Total	138	2.3	
TDS calc=	181	Density=		25 deg C	Conduct:	201.0	25 deg C
TDS evap=		Refrac=		25 deg C	pН	7.8	25 deg C
TDS ign=		TDS evap	@180=		Hardness:	113.0	mg/l as CaCO

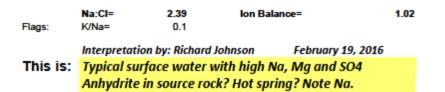


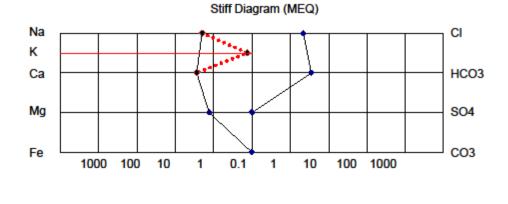

Sample ID: Date Sampl Lab ID: Remarks:	ed 5070941-02 Northing 5492796	TY 001 14-Jul-15 Easting 455562	Date Rece	Location: eived	14-Jul-15		
Cations	Mg/I	MEQ		Anions	Mg/I	MEQ	
Na	5.2	0.2		CI	1.41	0.0	
к	2.5	0.1		Br			
Ca	36.6	1.8		1			
Mg	9	0.7		HCO3	133.0	2.2	
Ba	0.06	0.0		SO4	18.5	0.4	
Sr	0.2	0.0		CO3			
Fe	0.14	0.0		Nitrate	<0.010	0.0	
Total	54	2.9		Total	153	2.6	
TDS calc=	207	Density=		25 deg C	Conduct:	246.0	25 deg C
TDS evap=		Refrac=		25 deg C	pH	8.1	25 deg C
TDS ign=		TDS evap	@180=		Hardness:	128.0	mg/l as CaC

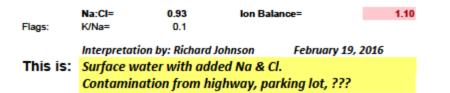



Sample ID: Date Sample Lab ID: Remarks:	ed 5080461-01 Northing 5542111	SEAT003-1 06-Aug-15 Easting 484088	Date Rece	Location:	07-Aug-15		
Cations	<u>Mg/l</u>			Anions	<u>Mg/l</u>		
Na K	2.2 <0.2	0.1		CI Br	0.45	0.0	
Ca Mg	45.3 13.2			I HCO3	141.9	2.3	
Ba Sr	<0.05	0.0		SO4 CO3	28.8	0.6	
Fe Total	1.56			Nitrate Total	0.02		
TDS calc=	234	3.5 Density=		25 deg C	Conduct:		25 deg C
TDS evap= TDS ign=		Refrac= TDS evap	@180=	25 deg C	pH Hardness:		25 deg C




Sample ID: Date Sample Lab ID: Remarks:	ed 5080461-02 Northing 5542111	SEAT003-2 06-Aug-15 Easting 484088	Date Rece	Location: eived	07-Aug-15		
<u>Cations</u> Na	<u>Mg/l</u> 1.9			<u>Anions</u> Cl	<u>Mg/l</u> 0.44		
K	<0.2 43.3	0.0		Br			
Mg Ba	11.4 <0.05	0.9		HCO3 SO4	150.2 29		
Sr Fe	0.26			CO3 Nitrate	0.02	0.0	
Total	57	3.2		Total	180	3.1	
TDS calc= TDS evap=	237	Density= Refrac=		25 deg C 25 deg C	Conduct: pH	7.9	25 deg C 25 deg C
TDS ign=		TDS evap	@180=		Hardness:	155.0	mg/l as CaCO3




Sample ID:		BON001		Location:		
Date Sample Lab ID:	ed 5071519-03	21-Jul-15	Date Rece	eived	22-Jul-15	
Remarks:	Northing	Easting				
	5549023	466568				
Cations	Mg/I	MEQ		Anions	Mg/I	MEQ
Na	7.2	0.3		CI	4.65	0.1
к	0.9	0.0		Br		
Ca	68.8	3.4		1		
Mg	21.7	1.8		HCO3	225.3	3.7
Ba	<0.05	0.0		SO4	79.3	1.7
Sr	0.62	0.0		CO3		
Fe	<0.10	0.0		Nitrate	<0.010	0.0
Total	99	5.6		Total	309	5.5
TDS calc=	409	Density=		25 deg C	Conduct:	431.0
TDS evap=		Refrac=		25 deg C	pН	8.0
TDS ign=		TDS evap	@180=		Hardness:	261.0

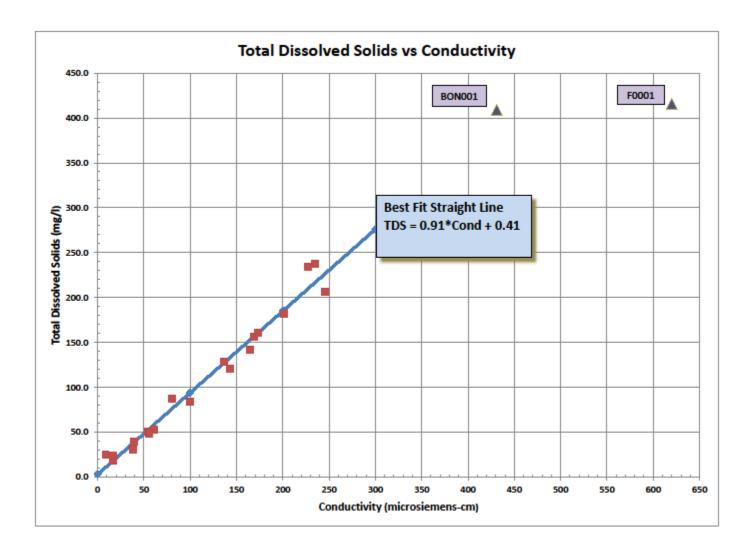
Sample ID: Date Sample Lab ID: Remarks:	ed 5070338-01 Northing 5496615	FO 001 06-Jul-15 Easting 460192	Date Rece	Location: eived	07-Jul-15		
Cations	Mg/I	MEQ		Anions	M	<u>a/I</u>	MEQ
Na	46.5	2.0		CI	76	.9	2.2
к	5.1	0.1		Br			
Ca	55.4	2.8		1			
Mg	15.9	1.3		HCO3	213	.5	3.5
Ba	0.13	0.0		SO4	<1.0	<1.0	
Sr	0.52	0.0		CO3			
Fe	1.25	0.0		Nitrate	0.	02	0.0
Total	125	6.3		Total	2	90	5.7
TDS calc=	415	Density=		25 deg C	Conduct:		620.0
TDS evap=		Refrac=		25 deg C	pH		7.9
TDS ign=		TDS evap	@180=		Hardness:		204.0

Appendix B

Attached to

Using Stiff Diagrams

to characterize


Surface Water Samples

from Wetlands in the Slocan Watershed

West Kootenay Area, British Columbia

Graph of

Total Dissolved Solids vs. Specific Conductivity

Appendix C

Attached to

Using Stiff Diagrams

to characterize

Surface Water Samples

from Wetlands in the Slocan Watershed

West Kootenay Area, British Columbia

Table

Location of Wetlands with Elevation and TDS

Sample.id	Invertsample.da	Site.name	Disturbances	Туре	Duration	Elevation	Northing	Easting	TDS
PC002	25/08/2014	Pass Creek Wetland	Residential	Riverine	Permenant	567	5474295	454778	
TF001/SEAT	26/08/2014	Three Forks, renamed Seaton Creek lower	Metals, legacy mining	Riverine	Permenant	962	5541616	483515	
LSL001	27/08/2014	Little Slocan Lakes -north lake, shore	Potential Reference	Lacustrine	Permenant	611	5503393	452782	
BVL001	09/08/2014	Beaver Lake complex, shallow wetland, upper	Potential Reference	Riverine	Permenant	867	5561188	464335	
F0001	29/06/2015	FOMI's wetland	Roads/Rail bed, chloride	Riverine	Temporary	519	5496615	460192	415
WIN001	30/06/2015	Winlaw woodlot wetland lower	Potential Reference	Palustrine	Permenant	976	5494995	461820	142
WIN002	30/06/2015	Winlaw woodlot wetland upper/Moose swamp	Potential Reference	Palustrine	Temporary	1028	5495161	462757	52
GC001	07/09/2015	Gander Crk fen, upper wetland	Potential Reference	Palustrine	Permenant	1571	5480369	452213	24
GC002	07/09/2015	Gander Crk shallow-water wetland, lower Flicker pond	Potential Reference	Palustrine	Permenant	1580	5479637	452715	25
CL001	07/09/2015	Cooley Lake	Potential Reference	Lacustrine	Permenant	1515	5482407	453242	18
HAY001	07/10/2015	Hay's wetland, 2329 Cunningham Road	Canary Reed Grass, road, residential	Riverine	Permenant	496	5482263	457573	84
TY001	07/10/2015	Tyson Ehler's pond	Canary Reed Grass, residential	Riverine	Permenant	513	5492796	455562	207
FRA001	07/10/2015	Frank Zalewski's Oxbow	Cattle	Riverine	Permenant	507	5492379	455226	88
ELD001	13/07/2015	Krispen Elder's pond	Canary Reed Grass, residential	Riverine	Permenant	521	5502111	462894	161
BEAR001	14/07/2015	Bear Lake outflow, south of Hwy 31A	Highway, lake outflow,	Riverine	Permenant	1080	5543400	486333	156
SEAT001	14/07/2015	Seaton Crk upper	Metals, legacy mining	Riverine	Permenant	1035	5542680	485047	181
LSL002	15/07/2015	Little Slocan Lakes -South lake	Potential Reference	Lacustrine	Permenant	653	5501110	451350	30
SUM001	21/07/2015	Summit Lake outflow-lower complex	Highway, rail, lake outflow	Riverine	Permenant	702	5555073	436568	120
SUM002	21/07/2015	Summit Lake outflow-edge of lake	Lake influence, recreation, residential	Lacustrine	Permenant	765	5555285	455800	129
BON001	21/07/2015	Bonanza Crk marsh, east side	Potential Reference	Lacustrine	Permenant	576	5549023	466568	409
LWL001	29/07/2015	Little Wilson Lake	Potential Reference	Lacustrine	Permenant	906	5564499	459540	49
BVL002	29/07/2015	Beaver Lakes complex, Horsetail pond	Potential Reference	Riverine	Permenant	887	5560619	464692	51
BVL003	29/07/2015	Beaver Lakes complex, fen	Potential Reference	Riverine	Permenant	891	5560293	464563	40
SEAT003-01	08/06/2015	Seaton Crk, mid	Metals, legacy mining	Riverine	Permenant	1008	5542111	484088	234
SEAT003-02	08/06/2015	Seaton Crk, mid	Metals, legacy mining	Riverine	Permenant	1008	5542111	484088	237

11.2 Technical Report, Rhithron: Macroinvertebrate quality control

Analysis of biological samples:

Technical summary of methods and quality assurance procedures

Prepared for Integrated Ecological Research

Darcie Quamme, Project Manager

January 13, 2016

by W. Bollman, Chief Biologist Rhithron Associates, Inc. Missoula, Montana

METHODS

Sample processing

Twenty macroinvertebrate samples collected for the Slocan Wetland Assessment & Mapping Project (SWAMP) were delivered to Rhithron's laboratory facility in Missoula, Montana on September 2, 2015. All samples arrived in good condition.

A chain-of-custody document containing sample identification information was provided by the Integrated Ecological Research (IER) Project Manager. Upon arrival, samples were unpacked, examined, and checked against the IER chain-of-custody. An inventory spreadsheet was created which included project code and internal laboratory identification numbers and was uploaded into the Rhithron database prior to sample processing.

Sorting protocols consistent with CABIN standard operating procedures (Environment Canada: CABIN Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples: May 2014) were applied to achieve representative subsamples of a minimum of 300 organisms. A Marchant Box was used for subsampling and sorting. Subsampling of each sample began with a random selection of 5 Marchant Box cells. All ostracods, copepods and cladoerans were picked from the first selected cell and placed in a separate vial; these organisms were not assigned a count and did not contribute to the 300 organism target. Subsequent sorting did not include these organisms. The initial 5 cells were completely sorted of all organisms. The contents of each grid were examined under stereoscopic microscopes using 10x-30x magnification. All aquatic invertebrates from each selected grid were sorted from the substrate, and placed in 80% ethanol for subsequent identification. Grid selection, examination, and sorting continued until at least 300 organism count, the entire sample was sorted. All unsorted sample fractions were retained and stored at the Rhithron laboratory.

Organisms were individually examined by certified taxonomists, using 10x – 80x stereoscopic dissecting scopes (Leica S8E) and identified to target taxonomic levels specified by the IER Project Manager, using appropriate published taxonomic references and keys.

Chironomids and oligochaetes were carefully morphotyped using 10x – 80x stereoscopic dissecting microscopes (Leica S8E) and representative specimens were slide mounted and examined at 200x – 1000x magnification using an Olympus BX 51 or Leica DM 1000 compound microscope.

Identification, counts, life stages, and information about the condition of specimens were recorded on electronic bench sheets. Organisms that could not be identified to the taxonomic targets because of immaturity, poor condition, or lack of complete current regionally-applicable published keys were left at appropriate taxonomic levels that were coarser than those specified. Organisms designated as "unique" were those that could be definitively distinguished from other organisms in the sample. Identified organisms were preserved in 80% ethanol in voucher labeled vials (by taxon and life stage), and shipped to the Royal BC Museum in Victoria, British Columbia.

Quality control procedures

Quality control procedures for initial sample processing and subsampling involved checking sorting efficiency. These checks were conducted on 15% of the samples (minimum of 3 samples from the project) by independent observers who microscopically re-examined sorted substrate from each sample. Quality control procedures for each sample proceeded as follows:

The quality control technician poured the sorted substrate from a processed sample out and all substrate was re-examined under 10x - 30x magnification. All organisms that were missed were counted and this number was added to the total number obtained in the original sort. Sorting efficiency was evaluated by applying the following calculation:

$$SE = \frac{n_1}{n_1 + n_2} \times 100$$

where: SE is the sorting efficiency, expressed as a percentage, n_1 is the total number of specimens in the first sort, and n_2 is the total number of specimens in the second sort.

Quality control procedures for taxonomic determinations of invertebrates involved checking accuracy, precision and enumeration. Three samples were randomly selected and all organisms reidentified and counted by an independent taxonomist. Taxa lists and enumerations were compared by calculating a Bray-Curtis similarity statistic (Bray and Curtis 1957), Percent Taxonomic Disagreement (PTD) and Percent Difference in Enumeration (PDE). Routinely, discrepancies between the original identifications and the QC identifications are discussed among the taxonomists, and necessary rectifications to the data are made. Discrepancies that cannot be rectified by discussions are routinely sent out to taxonomic specialists for identification.

Data analysis

Taxa and counts for each sample were entered into Rhithron's customized database software. A taxonomic flat file including site information, taxonomic hierarchy, taxonomic identifications, counts, life stages and other information was formatted in Microsoft Excel.

RESULTS

Quality Control Procedures

Results of internal quality control procedures for subsampling and taxonomy are given in Table 1. Sorting efficiency averaged 99.50%. Taxonomic precision for identification and enumeration averaged 98.17% (Bray-Curtis), 2.20% PTD and 0.49% PDE for the randomly selected taxonomic QC samples, and data entry efficiency averaged 100% for the project. These similarity statistics fall within acceptable industry criteria (Stribling et al. 2003).

Data analysis

An electronic spreadsheet was provided to the IER Project Manager via e-mail. Voucher labeled vials were shipped to the Royal BC Museum.

Rhithron ID	Station ID	Date Collected	Sorting efficiency	Bray-Curtis similarity for taxonomy and enumeration	Percent Taxonomic Disagreement (PTD)	Percent Difference in Enumeration (PDE)
IER15DQ001	FO001	6/29/2015		96.31%	4.28%	0.62%
IER15DQ002	WIN001	6/30/2015				
IER15DQ003	WIN002	6/30/2015				
IER15DQ004	GC001	7/9/2015	99.40%			
IER15DQ005	GC002	7/9/2015				
IER15DQ006	CL001	7/9/2015				
IER15DQ007	HAY001	7/10/2015				
IER15DQ008	TY001	7/10/2015		99.03%	1.65%	0.69%
IER15DQ009	FRA001	7/10/2015	99.11%			
IER15DQ010	ELD001	7/13/2015				
IER15DQ011	BEAR001	7/14/2015				
IER15DQ012	SEAT001	7/14/2015				
IER15DQ013	LSL002	7/15/2015	100.00%			
IER15DQ014	SUM001	7/21/2015				
IER15DQ015	SUM002	7/21/2015				
IER15DQ016	BON001	7/21/2015				
IER15DQ017	LWL001	7/29/2015				
IER15DQ018	BVL002	7/29/2015		99.18%	0.66%	0.16%
IER15DQ019	BVL003	7/29/2015				
IER15DQ020	SEAT003	8/6/2015				

Table 1. Results of internal quality control procedures for subsampling and taxonomy.Slocan WetlandAssessment & Mapping Project (SWAMP), 2015.

REFERENCES

Bray, J. R. and J. T. Curtis. 1957. An ordination of upland forest communities of southern Wisconsin. Ecological Monographs 27: 325-349.

Stribling, J. B., S.R Moulton II and G.T. Lester. 2003. Determining the quality of taxonomic data. J.N. Am. Benthol. Soc. 22(4): 621-631.